Подпишись и читай
самые интересные
статьи первым!

Назначение режущего кислорода и основные его характеристики. Сущность и условия кислородной резки. Основные параметры реза при разделительной кислородной резке. Влияние примесей в стали на процесс кислородной резки. Температура предварительного подогрева

Газовая резка металлов основана на способности железа (открытой в 1776 г. Лавуазье), нагретого до определенной температуры, вступать в реакцию с кислородом. Началом практического освоения этого открытия послужило полученное в 1895 г. французским ученым Ле Шателье высокотемпературное пламя при горении смеси ацетилена с кислородом.

Газовая резка предназначена для разделительной и поверхностной обработки металлов. При разделительной обработке, когда режущая струя кислорода напра:влана приблизительно перпендикулярно к.разрезаемой поверхности, металл прорезается «а всю толщину до отделения одной части от другой. Разделительная газовая резка получила наибольшее распространение в промышленности и позволяет успешно резать стали толщиной от 3 до 2000 мм.

Поверхностная обработка представляет собой процесс, при котором снимается только поверхностная часть металла. Резка происходит посредством большого наклона резака к поверхности металла, при этом струя режущего кислорода выжигает на его поверхности канавку овального сечения.

Наибольшее применение поверхностная резка получила в металлургии для удаления дефектов с поверхности литья и проката черных металлов. В некоторых случаях поверхностная резка с успехом может заменять черновую механическую обработку -- строжку, обточку, расточку и т. д.

В последнее время газовую резку принято называть кислородной, так как все ее процессы связаны с применением кислорода. Кроме газовой резки различают: кислородно-флюсовую, плазменную, дуговую, воздушно-дуговую, кислородно-дуговую, лазерную, копьевую и др.

Все указанные способы резки выполняются путем нагрева металла, поэтому их объединяет общее название -- термическая резка металла.

Сущность газовой (кислородной) резки заключается в том, что на предварительно нагретый участок разрезаемого металла до температуры воспламенения подается струя режущего кислорода. При этом происходит интенсивное окисление поверхности металла с выделением большого количества тепла. Верхние слои металла, сгорая, подогревают до воспламенения в струе кислорода нижележащие слои до тех пор, пока кислородная струя полностью не прорежет металл по всей толщине. Образующиеся в процессе резки продукты окисления металла (окислы, шлаки) выдуваются кинетической энергией струи из полости реза.

Таким образом, кислородная резка представляет собой совокупность трех одновременно происходящих процессов: подогрев металла до температуры воспламенения, сгорание металла в струе кислорода, удаление расплавленного шлака из полости реза. При отсутствии хотя бы одного из указанных процессов резка становится невозможной.

При кислородной резке необходимо, чтобы свойства разрезаемого металла удовлетворяли следующим условиям:

Температура воспламенения разрезаемого металла в среде кислорода должна быть ниже температуры его плавления;

Температура плавления окислов -- не превышать температуру плавления разрезаемого металла. В противном случае образующиеся тугоплавкие окислы будут препятствовать дальнейшему окислению металла;

Количество тепла, выделяющегося в процессе кислородной резки, должно быть достаточным для нагрева прилегающих участков металла до температуры его воспламенения и непрерывного поддержания процесса резки. При этом металл должен хорошо проводить тепло, чтобы не препятствовать своему нагреву;

Образующиеся при резке окислы должны быть жидкотекучими и легко выдуваться кислородной струей из полости реза;

Ручная и механизированная резка

Кислородная резка может быть ручная или механизированная (автоматическая, машинная). Ручная резка производится с помощью ручных резаков (Р2А-01, РЗП-01 и др.). Резак перемещается во всех положениях вручную.

Механизированная кислородная резка отличается тем, что резак или несколько резаков перемещаются по линии реза с помощью механических устройств. Для этой цели разработаны различные стационарные машины (ПКЦ 3,5-6-10УХЛ4, ПкК-2-4Ф-2, «Днепр 2,5-К2», АСШ-70 и др.) с механическим, магнитным, фотоэлектронным и программным управлением, а также переносные машины «Микрон-2», «Спутник-3», «Орбита-2».

Ручная кислородная резка, несмотря на свою простоту и универсальность, не обеспечивает высокой чистоты и точности вырезаемых заготовок, поэтому запрещается в качестве последней операции (требуется механическая обработка). При ручной резке используется только один резак. Применение двух и более резаков невозможно.

Механизированная кислородная резка по сравнению с ручной обладает следующими преимуществами:

Чистота реза и точность вырезаемых деталей во многих случаях не требуют последующей механической обработки;

Возможность одновременного использования двух и более резаков, что значительно повышает производительность резки;

Не требуется предварительной разметки или наметки по шаблону разрезаемого металла;

Обеспечивается более рациональное использование кислорода;

Возможность осуществления пакетной резки.

1. СУЩНОСТЬ ПРОЦЕССА КИСЛОРОДНОЙ РЕЗКИ

Основой процесса кислородной резки стали является свойство железа интенсивно сгорать в струе технически чистого кислорода, будучи нагретым до температуры порядка 1300—1400° С, близкой к температуре плавления стали.

Металл при резке нагревают газокислородным пламенем. В качестве горючих применяются ацетилен, пропан-бутан, пиролизный, природный, коксовый и городской газы, пары керосина.

Металл нагревают на узком участке в начале линии разреза, а затем на нагретое место направляется струя режущего кислорода и резак начинают перемещать по намеченной линии резки. Металл сгорает по всей толщине листа, образуя в нем узкую щель (рез). Интенсивное окисление (горение) железа происходит только в слоях, пограничных с поверхностью режущей струи кислорода, который проникает (диффундирует) в металл на очень малую глубину.

Для сгорания 1 кг железа теоретически требуется от 0,29 до 0,38 м 3 кислорода, в зависимости от того, какой окисел получается при горении — FeO или Fе з 0 4 . Практический расход кислорода может сильно отличаться от теоретического, так как в шлаках присутствуют оба окисла в различных соотношениях, часть металла удаляется из разреза в расплавленном состоянии, часть кислорода расходуется на выдувание жидкого металла и шлаков, а также теряется в окружающую среду. Для резки применяют технический кислород чистотой 98,8—99,7%. С понижением чистоты кислорода на 1 % его расход на 1 м длины резки возрастает на 25—35%, а время резки — на 10—15%. Это особенно заметно при резке стали больших толщин. Применять для резки кислород чистотой ниже 98% нецелесообразно, так как поверхность реза получается недостаточно чистой, с глубокими рисками и трудноотделяемым шлаком.

Существует также способ т.н. импульсной кислородной резки. Данный способ разработан ВНИИАвтогенмаш и состоит в том, что после начального подогрева по всей длине линии реза на нее пускается режущий кислород. Процесс резки протекает всего несколько десятков секунд. Так, например, труба диаметром 219 мм, толщиной стенки 15 мм прорезается за 77 сек. Для резки применяют секционированные резаки с внутрисопловым смешением газов (см. рис. 90, и).

2. ОСНОВНЫЕ УСЛОВИЯ РЕЗКИ. ВЛИЯНИЕ СОСТАВА СТАЛИ НА РЕЗКУ

Основные условия резки. Для резки металла кислородом необходимы следующие условия:

а) температура горения металла в кислороде должна быть ниже температуры плавления, иначе металл будет плавиться и переходить в жидкое состояние до того, как начнется его горение в кислороде;

б) образующиеся окислы металла должны плавиться при температуре более низкой, чем температура горения металла, и не быть слишком вязкими; если металл не удовлетворяет этому требованию, то кислородная резка его без применения специальных флюсов невозможна, так как образующиеся окислы не смогут выдуваться из места разреза;

в) количество тепла, выделяющееся при сгорании металла в кислороде, должно быть достаточно большим, чтобы обеспечить поддержание процесса резки. При резке стали около 70% тепла, используемого для подогревания, выделяется при сгорании металла в кислороде и только 30% подводится от подогревающего пламени;

г) теплопроводность металла не должна быть слишком высокой, иначе, вследствие интенсивного теплоотвода, процесс резки может прерваться.

Влияние состава стали на резку. Перечисленным выше условиям наиболее полно отвечают чистое железо и стали с низким содержанием углерода. Чистое железо имеет температуру воспламенения в кислороде 1050° С, а температуру плавления 1528°С. При содержании в стали 0,7% углерода температура ее воспламенения в кислороде повышается до 1300° С, что равно температуре начала плавления стали этого состава. По данным А. Н. Шашкова избирательное окисление железа в кислороде при резке стали начинается при температуре около 1130°С, а при 1300°С и выше начинается интенсивное выгорание углерода.

На температуру загорания, кроме состава металла, оказывает влияние также состояние поверхности металла, величина его кусков, давление и скорость потока кислорода. Шероховатая поверхность облегчает загорание металла в кислороде. Порошок железа может воспламеняться в чистом кислороде при температуре 315°С, т. е. значительно более низкой, чем прокатанный металл. Металл на поверхности крупного куска стали загорается при температуре 1200—1300°С. При давлении 25 кгс/см 2 и скорости потока кислорода 180 м/сек температура загорания углеродистой стали в кислороде снижается до 700—750° С.

Сущность процесса кислородной резки состоит в сгорании раз­резаемого металла в струе технически чистого кислорода и удале­нии образующихся при этом жидких шлаков из разреза. Применяет­ся разделительная кислородная резка и поверхностная. Углеро­дистые и низколегированные стали режутся с применением только чистого кислорода. Высоколегированные стали, чугун и медные сплавы режутся кислородом с применением специальных флюсов.

Процесс резки осуществляется или ручным способом, или меха­низированным с использованием специальных режущих перенос­ных приборов легкого типа, а также стационарных машин для авто­матизированной резки по шаблонам и разметке. Машинная резка широко применяется в машиностроении, особенно для предвари­тельной обрезки и скашивания кромок под сварку. Методы кисло­родной машинной резки продолжают широко развиваться и внед­ряться в промышленности путем создания новых конструкций спе­циализированных и универсальных машин.

Для осуществления процесса кислородной резки необходимо соблюдение следующих условий:

1. Температура плавления металла должна быть выше темпера­туры его воспламенения в кислороде. Не удовлетворяющий этому условию металл будет плавиться и переходить в жидкое состояние еще до начала его горения в струе кислорода. Малоуглеродистые и среднеуглеродистые стали полностью удовлетворяют этому ус­ловию, так как они плавятся при температуре примерно 1500°, а их горение в кислороде может начинаться уже при 1300-1350°.

2. Температура плавления шлаков должна быть ниже температу­ры горения металла в кислороде, а образующиеся при резке шлаки должны быть жвдкотекучими и легко удаляться под действием дав­ления режущей струи.

3. При сгорании металла должно выделяться тепло, достаточ­ное для поддержания горения металла в кислороде.

4. Теплопроводность металла не должна быть слишком высокой и не препятствовать сохранению высокой температуры на поверх­ности кромки разреза.

Всем указанным выше условиям наиболее полно удовлетворяют стали с содержанием углерода до 0,5%, хрома до 5%, марганца до 4%. Остальное примеси в тех количествах, в которых они обычно содержатся в стали, не влияют заметно на процесс резки.



Перед началом резки сталь необходимо нагреть до температуры ее воспламенения в кислороде. Примерно 33% тепла от всего ко­личества, требующегося для этого, подводится за счет подогрева­ющего пламени, а 67% поступает от реакции сгорания стали в кис­лороде.* От общего количества тепла, расходуемого на резку, на нагрев стали до температуры воспламенения идет 54%; на нагрев шлаков - 22% и на покрытие потерь в окружающую среду-24%.

Для кислородной резки с применением ацетилена используют оборудование для ацетиленовой сварки, но вместо сварочной горелки применяют газовый резак, обычно инжекторного тапа.

Кислород и ацетилен по рукавам, надетым на ниппели, поступает в резак. Резак - это основной рабочий инструмент при газокислородной резке металла, предназначенный для смешивания горючего газа и кислорода, создания подогревающего пламени и подачи к разрезаемому металлу струи кислорода.

Резаки классифицируются по степени механизации - для ручной, машинной и специальной резки; по виду горючего - для ацетилена, газов-заменителей и жидких горючих; по назначению - универсальные и специальные; по способу смешивания газов - инжекторные и безинжекторные; по мощности пламени - малой, средней и большой мощности (толщина разрезаемой стали соответственно составляет 3…100 мм, 3.. .200 мм, 3... 300 мм).

Инжекторный резак для ручной резки состоит из рукоятки и корпуса, в который по рукаву (шлангу) через ниппель и штуцер с правой резьбой подается кислород, а по другому рукаву через ниппель и штуцер с левой резьбой подается ацетилен или его заменители. Часть кислорода через вентиль поступает в инжектор. Выходя из инжектора с большой скоростью, струя кислорода создает разрежение и подсасывает горючий газ. Сгорая на выходе из мундштука, струя создает подогревающее пламя. Другая часть кислорода через ниппель и головку поступает в сопло внутреннего мундштука, образуя при этом струю режущего кислорода. Мощность подогревающего пламени регулируется вентилями кислорода и горючего газа, а давление и расход режущего кислорода - самостоятельным вентилем.

В промышленности применяются следующие виды кислородной резки: разделительная (лист разрезается на две или большее число частей); поверхностная (удаляется поверхностный слой металла в виде канавок) и копьевая (в металле прожигается глубокое отверстие) .

Сущность процесса и основные условия кислородной резки

Процесс кислородной резки основан на способности металла сгорать в струе технически чистого кислорода и состоит из подогрева металла до температуры воспламенения его в струе технически чистого кислорода, горения металла и выдувания струей кислорода окислов и частиц расплавившегося металла.

Температура нагрева участка металла, расположенного в начале намечаемой линии реза, зависит от массы (толщины) и главным образом от состава разрезаемого металла.

Чем больше масса и чем больше легирующих примесей, тем выше температура нагрева, а именно: для углеродистой стали-1200° С, а для легированной-1300° С.

Горение металла заключается в том, что на нагретое место направляется струя режущего кислорода. Кислород энергично окисляет верхние слои металла, которые при сгорании выделяют значительное количество тепла и нагревают до воспламенения в кислороде нижележащие слои металла. Интенсивность окисления увеличивается с увеличением чистоты кислорода и с повышением температуры.

Количество тепла, выделяющегося при резке от сгорания железа в кислороде, иногда в 3-5 раз превышает количество тепла, сообщаемого подогревательным пламенем резака. Однако выключать подогревательное пламя нельзя, так как при отсутствии подогревательного пламени струя кислорода встречает холодную поверхность металла и не воспламеняет ее, в результате чего резка прекращается.

Выдувание получаемых окислов (шлаков) начинается одновременно с окислением металла. Если шлаки не будут удаляться, то процесс резки прекратится, так как шлаки изолируют нижележащие слои металла от контакта с кислородом.

При установившемся процессе резки все три стадии протекают одновременно.

Газовой резке могут подвергаться не все металлы, а только те из них, которые удовлетворяют следующим основным требованиям.

1. Температура воспламенения металла должна быть ниже температуры его плавления. Если температура плавления ниже температуры воспламенения, то металл будет выплавляться, а не сгорать. Так, например, у меди, латуни, алюминия и его сплавов и чугуна температура воспламенения выше температуры плавления и поэтому эти металлы не могут резаться кислородом обычным способом. При пуске режущей струи кислорода расплавленные частицы этих металлов будут выдуваться из места реза, не сгорая в кислороде, а кромки разрезаемого изделия покроются слоем тугоплавких окислов этих металлов.

2. Температура плавления окислов металла, образующихся при резке, должна быть ниже температуры плавления самого металла и температуры, которая развивается в процессе резки металла. При этом условии окислы будут легко выдуваться из места реза в жидком виде. Если металл не удовлетворяет этому требованию, то кислородная резка его без применения специальных флюсов невозможна, потому что образующиеся окислы не будут находиться в жидком состоянии и не смогут быть удалены из места реза.

3. Образующиеся окислы должны быть жидкотекучими, так как в (противном случае шлак при резке будет плохо выдуваться.

Резка затрудняется, если образуется значительное количество газообразных продуктов сгорания, поскольку при этом уменьшается чистота режущей струи кислорода и снижается тем самым интенсивность окисления металла.

4. Количество тепла, развивающегося в процессе сгорания металла, должно быть возможно большим, чтобы легко осуществлялся подогрев металла до температуры воспламенения.

5. Теплопроводность металла должна быть возможно меньшей, так как в противном случае трудно подогреть металл до температуры воспламенения.

6. В металле не должно быть примесей, ухудшающих процесс резки.

Из всех металлов, применяемых в технике, перечисленным требованиям больше всего удовлетворяет сталь.

Влияние примесей в стали на резку ее кислородом. В зависимости от химического состава стали режутся по-разному. Хорошо режутся стали с содержанием углерода до 0,3%. При содержании углерода выше 0,3% резка не ухудшается, но сталь приобретает склонность к закалке и образованию трещин при резке, а поэтому требует предварительного подогрева. При содержании углерода свыше 0,7% процесс резки ухудшается и при содержании его 1-1,2% делается невозможным, так как при увеличении содержания углерода встали температура воспламенения ее повышается, а температура плавления падает.

Марганец при содержании его в стали до 4%на процесс резки заметного влияния не оказывает. При большем содержании марганца процесс резки затрудняется. При резке сталей с содержанием марганца более 0,8% и углерода более 0,3%, во избежание получения закалочных трещин, разрезаемый металл перед резкой рекомендуется подогревать.

Никель при содержании его в стали до 3-4% и одновременном содержании углерода в стали до 0,5% резки не затрудняет. При более высоком содержании углерода в никелевых сталях резка сильно затрудняется.

Хром затрудняет резку, так как образует тугоплавкие окислы, Кислородной резке поддаются стали, содержащие не более 1,5% хрома. При содержании хрома от 1,5 до 5% возможна резка с предварительным подогревом. Высоколегированные хромистые и хромоникелевые нержавеющие стали можно -резать только с помощью кислородно-флюсовой резки.

Молибден при содержании в стали до 0,5% на процесс резки не влияет.

Сера и фосфор в тех количествах, в которых они содержатся в стали, на процесс резки не влияют.

Кислородная резка почти не оказывает влияния на свойства малоуглеродистых сталей вблизи места реза. При резке сталей с повышенным содержанием углерода, марганца, хрома и молибдена кромки реза подвергаются закалке, становятся более твердыми, возможно появление трещин, особенно если сталь при этом имеет значительную толщину и резка ведется по сложному замкнутому контуру.

Закалка может быть уменьшена применением горючих газов, не содержащих углерод (например, водорода), или подогревательного пламени с избытком кислорода.

Углеродистые стали с содержанием углерода более 0,35% и низколегированные с содержанием углерода более 0,2% могут закаливаться и и зоне термического воздействия резки. При резке таких сталей необходимо применять предварительный подогрев металла либо снижать скорость охлаждения посредством дополнительного источника нагрева, перемещаемого позади основного резака. Качество реза при этом получается удовлетворительным.


К атегория:

Резание металла

Сущность процесса кислородной резки

Из этого уравнения следует, что на сжигание 1 г железа расходуется 0,38 г или 0,27 л кислорода, или на 1 см3 железа расходуется 2,1 л кислорода. Действительный расход кислорода на 1 см3 железа в процессе резки может быть как выше, так и ниже указанного теоретического значения, ввиду того что часть металла выдувается из полости реза в неокисленном виде и вытекающий шлак содержит не только окислы, но и металлическое железо. Выделяемое при горении железа довольно значительное количество тепла оплавляет поверхность металла, и получающийся жидкий металл увлекается в шлак вместе с расплавленными окислами.

Железо или сталь не загораются, как известно, в кислороде при низких температурах; кислород, например, хранят и перевозят в стальных баллонах. Для начала горения металла в кислороде нужно подогреть металл; температура начала горения зависит от состава металла и находится в пределах 1000-1200 °С. Температура начала горения повышается с увеличением содержания углерода в металле при одновременном понижении температуры плавления металла. Настоящая высококачественная кислородная резка металла возможна лишь в том случае, если металл горит в твердом состоянии. Если же металл загорается лишь при расплавлении, то в процессе резки происходит значительное пасплавление и вытекание металла из полости реза и рез получается широким и неровным, как при тепловых методах резки.

Процесс газокислородной резки можно представить следующим образом. Смесь кислорода с горючим газом выходит из подогревательного мундштука резака и сгорает, образуя подогревательное пламя. Подогревательным пламенем металл нагревается до температуры начала горения, тогда по осевому каналу режущего мундштука подается технически чистый кислород. Режущий кислород попадает на нагретый металл и зажигает его. Начинается горение металла; при этом выделяется значительное количество тепла, которое совместно с подогревательным пламенем разогревает нижележащие слои металла, и горение быстро распространяется в глубину на всю толщину металла, прожигая сквозное отверстие, через которое режущая струя кислорода выходит наружу, пробивая металл. Если перемещать далее резак по прямой или кривой линии с надлежащей скоростью, то сжигание металла будет происходить по этой линии и металл будет разрезаться.

Таким образом, кислородная резка складывается из нескольких процессов: подогрева металла, сжигания металла в струе кислорода, выдувания расплавленного шлака из полости реза. Подогревательное пламя обычно не тушат, и оно горит в течение всего процесса резки, так как количество тепла, выделяемого при сжигании железа в кислороде, недостаточно для возмещения всех потерь тепла зоны резки; если подогревательное пламя потушить, то процесс резки быстро прекращается, металл охлаждается настолько, что кислород перестает на него действовать, и реакция горения металла в кислороде прекращается.

Для возможности успешного проведения- кислородной резки разрезаемый металл должен удовлетворять определенным требованиям. Температура начала горения металла должна быть ниже температуры его плавления, т. е. металл должен гореть в твердом, нерасплавленном состоянии. Температура плавления окислов металла, образующихся при резке, должна быть ниже температуры плавления самого металла. В этом случае окислы легко выдуваются из полости реза и режущий кислород получает беспрепятственный доступ к нижележащим слоям металла. Теплота сгорания металла должна быть достаточно большой, иначе требуется слишком мощное подогревательное пламя. Теплопроводность усиливает охлаждение зоны резки и затрудняет необходимый подогрев металла. Практически указанным условиям удовлетворяет лишь железо и его технические сплавы - стали. Большинство других металлов, применяемых в технике, не удовлетворяет указанным условиям и не поддается кислородной резке.

Рис. 1. Схема процесса газокислородной резки: 1 - режущий мундштук; 2 - режущий кислород; 3 - разрезаемый металл; 4 - подогревательный мундштук; 5 - подогревательное пламя; в - шлаки

Чугун не режется вследствие низкой температуры плавления и высокой температуры начала горения; он горит в кислороде в расплавленном состоянии, что исключает возможность получения качественного реза. Медь не режется вследствие высокой теплопроводности и малой теплоты сгорания. Алюминий не режется вследствие чрезмерной тугоплавкости образующегося окисла и т. д. Стали высокоуглеродистые, высоколегированные аустенитные, высокохромистые и т. д., не поддающиеся нормальному процессу газокислородной резки, могут быть разрезаны кислородом с использованием специальных приемов, рассмотренных ниже.

Для резки необходим возможно более чистый кислород; даже незначительное количество примесей заметно снижает скорость резки и сильно повышает расход кислорода. В качестве горючего для подогревательного пламени при кислородной резке с успехом может быть использован любой промышленный горючий газ, а также жидкие горючие - бензин, бензол, керосин и т. д.


Включайся в дискуссию
Читайте также
Как сделать настольный календарь своими руками из бумаги
Как сделать елку из шишек сосны Как сделать елку из шишек сосны пошагово
Свойства пирамидальной воды