Подпишись и читай
самые интересные
статьи первым!

Светодиодная гирлянда на МК Attiny13. Новогодняя эффектная гирлянда на WS2812 и ATMega8 Управление гирляндой на микроконтроллере 4 канала 220в

Эта СДУ разработана в двух вариантах. Первый управляет только расположенными на его плате светодиодами и предназначен для разработки и отладки программ световых эффектов. Микроконтроллер с отлаженной программой может быть перенесён на плату второго варианта СДУ, к которому можно подключить 16 осветительных приборов, питающихся от сети 220 В

Из 20 выводов микроконтроллера ATtiny2313 в рассматриваемых СДУ использованы 19: два — для подачи напряжения питания; один — для подключения кнопки, управляющей скоростью воспроизведения световых эффектов; 16 — для формирования сигналов управления гирляндами или другими световыми приборами.

Предусмотрено восемь значений скорости воспроизведения эффектов, их переключают по кругу нажатиями на кнопку. При минимальной скорости состояние гирлянд изменяется каждые 8 с, а при максимальной период смены уменьшается до 0,5...1 с. Следует иметь в виду, что из-за особенностей программы необходимая для переключения скорости длительность нажатия на кнопку довольно велика. К тому же она зависит от скорости, установленной в данный момент. Информацию о скорости микроконтроллер хранит в своём EEPROM, поэтому при включении СДУ она становится такой же, какой была в предыдущем сеансе работы.

Рис. 1. Схема СДУ с микроконтроллером ATtiny2313 на 16 гирлянд

Схема отладочного варианта СДУ, управляющего только светодиодами HL1—HL16, изображена на рис. 1 .

Микроконтроллер DD1 работает от внутреннего RC-генератора частотой 4 МГц. Разъём ХР1 предназначен для соединения с программатором установленного в панель СДУ микроконтроллера. На время программирования цепь питания светодиодов должна быть разорвана выключателем SA1, что исключает их влияние на процесс программирования. Резистор R1 поддерживает высокий логический уровень напряжения на входе PD2 микроконтроллера, когда кнопка SB1 отпущена. При нажатой кнопке этот уровень становится низким.

Устройство собрано на печатной плате размерами 95x70 мм из фольгированного стеклотекстолита. Её чертёж показан на рис, 2 . Для микроконтроллера на плате предусмотрена панель. Это позволяет запрограммировать его и проверить в работе, а затем перенести в другую СДУ, которая будет описана ниже.

Плата рассчитана на установку оксидных конденсаторов (С1 и С2) SR или аналогичных. Диэлектрик конденсаторов СЗ и С4 — керамика. Резисторы — CF-0,125 или другие подобные. Трансформатор Т1 — ТПГ-2 с вторичным переменным напряжением 6 В, конструктивно предназначенный для установки на печатную плату. Можно применить его аналог BVEI 306 2061 мощностью 2,6 В-А. Стабилизатор DA1 в рассматриваемом случае теплоотвода не требует. Кнопки SB1 и выключатель SA1 могут быть любыми, подходящими по размерам для установки на плату.

Второй вариант СДУ управляет не светодиодами, а лампами накаливания или другими световыми приборами на 220 В. Для этого каждая из пар резистор—светодиод предыдущего варианта заменена симисторным коммутатором, схема которого изображена на рис. 3 . Для управления мощным симистором VS1 здесь использован оптрон 1)1, фотодинистор которого устроен так, что моменты его открывания всегда совпадают с переходами приложенного к нему напряжения через ноль. Это уменьшает создаваемые СДУ электромагнитные помехи.

Поскольку для управления оптроном МОС3043 достаточно тока через его излучающий диод всего 5 мА, суммарная нагрузка на микроконтроллер не превышает 80 мА. Общий ток потребления от узла питания в новом варианте приблизительно в два раза меньше. Это позволило отказаться от трансформатора и применить бестрансформаторный узел с гасящими конденсаторами. На его схеме (рис. 4 ) нумерация элементов продолжает начатую на рис. 1 .

Печатная плата второго варианта имеет размеры 195x85 мм. Её чертёж показан на рис. 5 . Элементы шестнадцати одинаковых коммутаторов имеют на нём позиционные номера с цифровыми префиксами, означающими порядковый номер коммутатора. Например, 8R1—8R3, 8U1, 8VS1 — элементы восьмого коммутатора, заменившего резистор R9 и светодиод HL8 и управляющего лампой накаливания (или собранной из них гирляндой) 8EL1.

Все 16симисторов 1VS1 — 16VS1 закреплены на общем теплоотводе из алюминиевой пластины размерами 160x25x2 мм, расположенной перпендикулярно поверхности платы. Крепёжные отверстия для симисторов просверлены в ней на высоте 19 мм от платы.

Симисторы ВТ138Х-600 в полностью изолированном корпусе TO-220F могут быть заменены приборами серий ВТ137—ВТ139 на 600 или 800 В, в том числе в обычном корпусе ТО-220 с металлическим крепёжным и тепло-отводящим фланцем. Поскольку этот фланец соединён внутри симистора с его выводом 2, а все эти выводы соединены на плате, изоляция симисторов от теплоотвода не требуется.

Рекомендуется сначала закрепить на теплоотводе симисторы, а затем смонтировать всю их сборку на плату. Непосредственно к выводам симисторов припаивают резисторы 1R3—16R3. Выводы 1 симисторов зажимают в обращенных к ним отверстиях винтовых зажимов ЗВИ-10-2,5-6 мм2, колодка с которыми (рис. 6 ) установлена вдоль длинной стороны платы рядом с сими-сторами. Всего в колодке 17 пар зажимов, 16 из которых служат для подключения ламп 1EL1—16EL1, а ещё одна — для их общего провода.


Конденсаторы С5 и С6 — К73-17В или импортные, способные работать при переменном напряжении не менее 250 В. Резисторы 1R1 —16R1 — MF-1.

Для микроконтроллера должна быть предусмотрена панель, в которую его следует устанавливать уже запрограммированным.

К статье прилагаются три версии программы микроконтроллера, пригодных для использования в обоих вариантах СДУ:
PG16H_S_REGULhex — 16 гирлянд работают независимо;
PG8_MK_S_REG.hex — две группы по восемь гирлянд работают синхронно;
PG4_MK_S_REGUL.hex — четыре группы по четыре гирлянды работают синхронно.

Конфигурацию микроконтроллера во всех случаях оставляют установленной на заводе-изготовителе.
Если используется меньшее число гирлянд (светодиодов), то элементы, относящиеся к неиспользуемым гирляндам, на платы описанных СДУ можно не устанавливать. При работе с СДУ второго варианта, все компоненты которого имеют гальваническую связь с сетью, необходимо соблюдать правила электробезопасности.

Журнал Радио,№11 2014г. И. АБЗЕЛИЛБАШ, г. Сибай, Башкирия

Вот и Новый год скоро! На прилавках магазинов рядом с мандаринами, конфетами и шампанским появляются елочные игрушки: разноцветные шары, мишура, всевозможные флажки, бусы и, конечно же, электрические гирлянды.

Обычную гирлянду из разноцветных лампочек, пожалуй, и не купить. Зато различных мигалок, в основном китайского производства, просто не счесть. Микроскопические лампочки могут располагаться на куске картона или вплетаются в ковер из проводов, которым можно украсить сразу целое окно.

Елочные гирлянды тоже отличаются большим разнообразием, прежде всего внешним оформлением, дизайном. Стоимость подобных гирлянд невелика, как, собственно, и мощность лампочек.

Большинство гирлянд имеют маленькую пластмассовую коробочку с одной кнопкой, шнуром с сетевой вилкой и проводами, идущими на гирлянду разноцветных лампочек. Оформление гирлянды может быть самым разнообразным.

Самый простой, и дешевый вариант состоит из микроскопических лампочек, вставленных . На обратной стороне упаковочной коробки написана инструкция по замене лампочек и правила техники безопасности, хотя запасных лампочек не прилагается. Именно такие гирлянды продаются в сети магазинов «Все по 38», правда, в последнее время уже по сорок рублей.

Рисунок 1. Гирлянда за сорок рублей

Гирлянды другого фасона имеют на лампочках небольшие пластиковые плафончики, например, в виде прозрачных цветков с лепестками. Но коробочка с кнопкой остается той, же самой, хотя цена гирлянды доходит рублей до двухсот. Попробуем открыть коробочку, и посмотреть, что же там внутри.

Рисунок 2. Внешний вид контроллера гирлянды с тремя тиристорами

В нижней части рисунка показаны два провода, это как раз подключение устройства к сети. Здесь же находится кнопка, с помощью которой переключаются режимы работы. В верхней части можно увидеть три тиристора и провода, отходящие к гирляндам.

В середине платы находится , - такая черная капля, установленная на маленькой печатной плате. Плата имеет контактные площадки, с помощью которых контроллер впаивается в основную плату.

Сколько тиристоров на плате

К выходам микроконтроллера подключаются управляющие электроды тиристоров, которые включают гирлянды лампочек. Микроконтроллер имеет четыре выхода, но часто, вместо четырех тиристоров на плате установлено только три, а в некоторых случаях всего два.

Необходимый визуальный эффект достигается подключением гирлянд и расположением лампочек: в одной гирлянде запаяны лампочки двух, а то и трех цветов. Как раз такая плата и показана на рисунке 2.

Если посмотреть на эту плату со стороны печатного монтажа, то можно увидеть, что три тиристора запаяны, а под четвертый имеются отверстия с залуженными контактными площадками, как показано на рисунке 3. В некоторых случаях отверстия даже не просверлены, мол, кому заблагорассудится, просверлит сам.

Рисунок 3. Плата контроллера гирлянды. Свободное место для тиристора

Здесь следует заметить такую особенность: если выход контроллера никуда не подключен, это вовсе не означает, что он нерабочий. Программа во всех контроллерах прошита, видимо, одна и та же, все выходы контроллера задействованы.

В этом легко убедиться с помощью стрелочного тестера. Если померить постоянное напряжение на свободной ноге, то стрелка будет скакать, дергаться и отклоняться вместе с миганием других гирлянд. Достаточно просто запаять в плату недостающий тиристор, и, пожалуйста, получаем полноценную четырехканальную гирлянду.

Тиристор можно взять со старой неисправной платы (бывает, что в негодность приходит контроллер) или за сорок рублей купить дополнительную гирлянду и оттуда извлечь тиристор. Для хорошего дела расходы крайне незначительны!

Принципиальная схема гирлянды

По печатной плате несложно составить принципиальную схему. Существуют две разновидности схем, несколько отличающиеся друг от друга. Первый, наиболее совершенный вариант показан на рисунке 4.

Рисунок 4. Контроллер китайской гирлянды. Вариант 1

Питание всей схемы осуществляется через VD1…VD4. Гирлянды питаются пульсирующим напряжением и включаются контроллером через тиристоры VS1…VS4. Резистор R1 и микроконтроллер DD1 образуют делитель напряжения, на выходе которого получается напряжение 12В.

Конденсатор C1 сглаживает пульсации выпрямленного напряжения. Через резистор R7 сетевое напряжение подается на вход контроллера 1 для синхронизации схемы с частотой сети 220В, что позволяет осуществлять фазовое управление тиристорами. Эта синхронизация позволяет осуществлять плавное зажигание и угасание гирлянд. Именно такие платы можно встретить в дорогих гирляндах.

Плата, показанная на рисунке 3, собрана по несколько упрощенной схеме, которая показана на рисунке 5.

Рисунок 5. Контроллер китайской гирлянды. Вариант 2

Сразу бросается в глаза, что тиристоров всего три штуки, а от выпрямительного моста остался всего один диод. Также исчезли резисторы из управляющих электродов тиристоров. Но, в целом, потребительские свойства остались теми же, что и в предыдущей схеме, несмотря на то, что лампочки зажигаются только тогда, когда на верхнем проводе схемы присутствует положительный полупериод сетевого напряжения. Без выпрямительного моста получается однополупериодное выпрямление.

Этот вариант схемотехнического решения присущ тем гирляндам, которые «все по сорок». Вот, собственно, и все, что можно сказать о схемотехнике китайских елочных гирлянд.

Как подключить мощные лампы

Мощность гирлянд невелика, лампочки просто микроскопические, кроме домашней елки вряд ли куда еще подойдут. Но иногда требуется подключить гирлянду с мощными лампами накаливания, например для декоративной подсветки фасадов зданий. Такая доработка уже была приведена в статье . Схема доработанной гирлянды показана на рисунке 8 в упомянутой статье.

Если не хочется переделывать плату

Гораздо проще обойтись без переделки платы контроллера. Все, что придется сделать, это изготовить четыре мощных выходных ключа с оптронными развязками и присоединить их вместо маломощных гирлянд. Схема силового ключа показана на рисунке 6.

Рисунок 6. Мощный силовой ключ с оптронной развязкой

Собственно, схема типовая, работает безотказно, никаких подводных камней в себе не содержит. Как только засвечивается светодиод оптрона MOC3021, открывается маломощный оптронный тиристор и через выводы 4, 6 и резистор R1 соединяются управляющий электрод и анод симистора BTA16-600. Симистор открывается и включает нагрузку, в данном случае гирлянду.

Оптрон следует применить без встроенной схемы CrossZero (детектор перехода сетевого напряжения через ноль), например, MOC3020, MOC3021, MOC3022, MOC3023. Если оптрон имеет узел CrossZero, то схема РАБОТАТЬ НЕ БУДЕТ! Об этом забывать не следует.

Симистор BTA16-600 обладает следующими параметрами: прямой ток 16А, обратное напряжение 600В. При токе 5А и напряжении 220В мощность нагрузки уже целый киловатт. Правда, потребуется установить симистор на радиатор.

Металлическая подложка изолирована от кристалла, о чем говорит буква А в маркировке симистора. Это дает возможность устанавливать симисторы на радиатор без слюдяных прокладок и изоляторов для винта. Кстати, именно эти симисторы стоят в регуляторах мощности бытовых пылесосов, при этом радиатор обдувается потоком воздуха на выходе пылесоса.

Если мощность нагрузки не более 400Вт, то можно обойтись и без радиатора. Цоколевка симистора показана на рисунке 7.

Рисунок 7. Цоколевка симистора BTA16-600

Этот рисунок будет совсем не лишним при сборке схемы силового ключа. Все четыре силовых ключа, лучше всего, собрать на общей печатной плате. Резистор R лучше собрать из двух резисторов мощностью по 2Вт, что позволит избежать их чрезмерного нагрева. Максимальный ток входного светодиода оптрона 50мА, поэтому ток в 20…30мА обеспечит его долговременную безотказную работу.

Рисунок 8. Подключение силовых ключей к плате контроллера

В целом все понятно и просто. От контроллера отпаиваются гирлянды, а вместо них запаиваются входные цепи силовых ключей. При этом не требуется никакого вмешательства в печатный монтаж контроллера. Исключение составляет только запаивание дополнительного тиристора, при условии, что его удастся найти. Также придется несколько умощнить сетевой шнур с вилкой, поскольку оригинальный имеет очень маленькое сечение.

При правильном монтаже и исправных деталях схема не нуждается в настройке. Конструкция устройства произвольная, лучше всего в металлическом корпусе, подходящих размеров, который будет выполнять роль радиатора для симисторов.

С целью обеспечения электробезопасности устройство следует включать через автоматический выключатель, или хотя бы плавкий предохранитель.

Как говорится в народе - готовь сани летом…
Наверняка на новый год украшаете ёлку всевозможными гирляндами, и скорей всего они уже давным давно приелись однообразием своего мигания. Хотелось бы сделать что-то такое чтобы ух, прям как на столичных елках мигало, только в меньшем масштабе. Или на крайний случай - повесить на окно, чтобы эта прям красота освещала город с 5-го этажа.
Но увы, в продаже таких гирлянд нет.

Собственно, именно эту проблему и пришлось решать два года назад. Причем, из-за лени от задумки до реализации прошло как обычно 2 года, и делалось все в последний месяц. Собственно, у вас времени будет больше(или я ничерта не смыслю в человеческой психологии, и все точно так же будет делаться в последние 2 недели перед новым годом?).

Получилась достаточно несложная конструкция из отдельных модулей со светодиодами, и одним общим который передает команды с компьютера в сеть этих модулей.

Первый вариант модуля задумывался так чтобы подключать их в сеть по двум проводам, чтобы меньше путаницы и все такое - но не срослось, в итоге потребовался довольно мощный и быстродействующий ключ чтобы коммутировать питание даже малого количества модулей - явный перебор для простоты конструкции, поэтому предпочтение отдал третьему проводу - не так удобно, зато гораздо проще организовать канал передачи данных.

Как все устроено.

Разработанная сеть способна адресовать до 254 подчиненных модулей, которые далее будут называться SLAVE - они соединены всего 3-мя проводами, как вы уже догадались - два провода это питание +12В, общий и третий - сигнальный.
они имеют несложную схему:


Как можно увидеть, она поддерживает 4 канала - Красный, Зеленый, Синий и Фиолетовый.
Правда, по результатам практического тестирования, фиолетовый хорошо видно только вблизи но зато как! Так же, из-за того что цвета расположены слишком далеко друг от друга смешение цветов можно увидеть только метров с 10, если использовать RGB-светодиоды ситуация будет несколько получше.
В целях упрощения конструкции так же пришлось отказаться и от кварцевой стабилизации - во-первых, лишний вывод забирает и во-вторых стоимость кварцевого резонатора довольно ощутима и в-третьих - в нем нет острой необходимости.
На транзисторе собран защитный каскад, чтобы не выбило порт контроллера от статики - линия все же довольно длинной может быть, в крайнем случае пострадает только транзистор. Каскад рассчитан в MicroCap и имеет примерный порог срабатывания около 7 вольт и слабую зависимость порога от температуры.

Естественно, в лучших традициях на адрес под номером 255 реагируют все модули - так можно их все одновременно выключить одной командой.

Так же в сеть подключен модуль называемый MASTER - он является посредником между ПК и сетью из подчиненных SLAVE-модулей. Помимо прочего он является источником образцового времени, для синхронизации подчиненных модулей в условиях отсутствия в них кварцевой стабилизации.

Схема:

В схеме есть не обязательные потенциометры - их можно использовать в программе на ПК для удобной и оперативной настройки желаемых параметров, на данный момент это реализовано только в тестовой программе в виде возможности назначить любому из 4-х каналов любой из потенциометров. Схема подключается к ПК через преобразователь интерфейса USB-UART на микросхеме FT232.

Пример выдаваемого пакета в сеть:

Его начало:

Электрические характеристики сигнала: лог.0 соответствует +9...12В, а лог.1 соответствует 0...5В.

Как можно увидеть, данные передаются последовательно, с фиксированной скоростью по 4 бита. Это обусловлено необходимым запасом на ошибку по скорости приема данных - SLAVE-модули не имеют кварцевой стабилизации, а такой подход гарантирует прием данных при отклонении скорости передачи до +-5% сверх тех что компенсируются программным методом на основе измерения калиброванного интервала в начале передачи данных который дает стойкость к уходу опорной частоты еще на +-10%.

Собственно, алгоритм работы MASTER-модуля не так интересен(он достаточно прост - получаем данные по UART и переправляем их в сеть подчиненных устройств), все самые интересные решения реализованы именно в SLAVE-модулях, которые собственно и позволяют подстраиваться под скорость передачи.

Основным и самым главным алгоритмом является реализация 4-х канального 8-битного программного ШИМ который позволяет управлять 4-мя светодиодами при 256 градациях яркости каждого их них. Реализация этого алгоритма в железе так же определяет скорость передачи данных в сети - для программного удобства передается по одному биту на каждый шаг работы ШИМ. Предварительная реализация алгоритма показала что он выполняется за 44 такта, поэтому было принято решение использовать таймер настроенный на прерывание каждые 100 тактов - таким образом прерывание успевает гарантированно выполнится до наступления следующего и выполнить часть кода основной программы.
На выбранной тактовой частоте внутреннего генератора в 4.8Мгц прерывания возникают с частотой 48кГц - именно такую битовую скорость имеет сеть подчиненных устройств и с такой же скоростью наполняется ШИМ - в итоге частота ШИМ-сигнала составляет 187.5Гц, чего вполне достаточно чтобы не замечать мерцания светодиодов. Так же, в обработчике прерывания после выполнения алгоритма ответственного за формирование ШИМ фиксируется состояние шины данных - получается примерно по середине интервала переполнения таймера, это упрощает прием данных. В начале приема очередного пакета в 4 бита происходит обнуление таймера, это необходимо для более точной синхронизации приема и стойкости к отклонению скорости приема.
В итоге получается такая картина:

Интересна реализация алгоритма подстройки под скорость передачи. В начале передачи MASTER выдает импульс длительностью в 4 бита лог.0, по которым все подчиненные модули определяют необходимую скорость приема при помощи несложного алгоритма:

LDI tmp2, st_syn_delay DEC tmp2 ;<+ BREQ bad_sync ; | SBIC PINB, cmd_port; | RJMP PC-0x0003 ;-+

St_syn_delay = 60 - константа, определяющая максимальную длительность стартового импульса, которая принята примерно в 2 раза больше номинала (для надежности)

Экспериментальным методом было установлена такая зависимость получаемого числа в tmp2 при отклонении тактовой частоты от номинала:

4.3Mhz (-10%) 51 единиц (0x33) соответствует 90 тактам таймера для возврата скорости приема к номиналу
4.8Mhz (+00%) 43 единиц (0x2B) - соответствует 100 тактам таймера(номинал)
5.3Mhz (+10%) 35 единиц (0x23) - соответствует 110 тактам таймера для возврата скорости приема к номиналу

По этим данным были рассчитаны коэффициенты коррекции периода прерываний таймера(именно таким образом скорость приема подстраивается под имеющуюся тактовую частоту контроллера):

Y(x) = 110-x*20/16
x = tmp2 - 35 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
Y(x) = (110, 108.75, 107.5, 106.25, 105, 103.75, 102.5, 101.25, 100, 98.75, 97.5, 96.25, 95, 93.75, 92.5, 91.25, 90)

Числа округлены до целых и занесены в EEPROM.

Если при подаче напряжения на модуль удерживать линию в логическом состоянии «1» включится подпрограмма калибровки, которая позволит измерить частотомером или осциллографом период ШИМ-сигнала без коррекции и на основании измерений судить об отклонении тактовой частоты контроллера модуля от номинальной, при сильном отклонении больше 15% может потребоваться коррекция калибровочной константы встроенного RC-генератора. Хотя производитель обещает калибровку на заводе и отклонение от номинала не более 10%.

На данный момент, разработана программа на Delphi позволяющая воспроизводить ранее составленный паттерн для 8-ми модулей с заданной скоростью. А так же утилита для работы с отдельным модулем(в том числе переназначение адреса модуля).

Прошивка.
для SLAVE-модуля необходимо прошить только фьюзы CKSEL1 = 0, и SUT0 = 0. Остальные оставить непрошитыми. Содержимое EEPROM прошить из файла RGBU-slave.eep, при необходимости тут же можно задать желаемый адрес модуля в сети - 0-й байт EEPROM, по умолчанию прошит как $FE = 254, по адресу 0x13 содержится калибровочная константа встроенного RC-генератора контроллера, на частоте 4.8Мгц она не загружается автоматически поэтому необходимо программатором считать заводское значение калибровки и записать в эту ячейку - это значение индивидуально для каждого контроллера, при больших отклонениях частоты от номинала можно изменять калибровку именно через эту ячейку не затрагивая заводского значения.

Для MASTER-модуля необходимо прошить только фьюзы SUT0 = 0, BOOTSZ0 = 0, BOOTSZ1 = 0, CKOPT = 0. Остальные оставить непрошитыми.

Напоследок небольшая демонстрация гирлянды расположенной на балконе:

На самом деле, функциональность гирлянды определяется программой на ПК - можно сделать цветомузыку, стильное переливающееся освещение комнаты(если добавить драйверы светодиодов и использовать мощные светодиоды) - и т.д. Чем планирую заняться в будущем. В планах сетка из 12 модулей с 3-ваттными RGB-светодиодами, и комнатное освещение на основе кусочков 12-вольтной RGB-ленты(нужны только полевые транзисторы для коммутации ленты на каждый модуль по 3 штуки или 4 если добавить кусочек фиолетовой ленты других отличий от оригинала не будет).

Для управления сетью можно написать свою программу, хоть на бейсике - главное что должен делать выбранный язык программирования - уметь подключаться к бессмертным COM-портам и настраивать их параметры. Вместо интерфейса USB можно использовать переходник с RS232 - это дает потенциальную возможность управления световыми эффектами с широкого круга устройств которые вообще можно запрограммировать.
Протокол обмена с MASTER-устройством достаточно прост - посылаем команду и ожидаем ответ об её успешности или провале, если ответа нет больше нескольких милисекунд - имеются проблемы с соединением или работой MASTER-устройства, в таком случае необходимо провести процедуру переподключения.

На данный момент доступны следующие команды:

0x54; символ «T» - команда «test» - проверка соединения, ответ должен быть 0x2B.
0x40; символ "@" - команда «загрузить и передать». После подачи команды нужно дождаться ответа "?" далее следует 6 байт данных:
+0: Адрес подчиненного устройства 0..255
+1: Команда устройству
0x21 - байты 2...5 содержат яркость по каналам которую необходимо применить немедленно.
0x14 - установить тайм-аут, по истечении которого яркость по всем каналам будет
сброшена на 0 если за это время не поступит ни одной команды. Значение таймаута находится в ячейке красного канала, т.е. в байте со смещением +2. значение 0-255 соответствует таймауту в 0-25.5 сек по умолчанию, таймаут = 5 секунд(записан в EEPROM при прошивке, там же его можно и изменить в байте со смещением +1).
0x5A - изменить адрес устройства.
Процедура смены адреса для надежности должна быть выполнена троекратно - только тогда новый адрес будет применен и прописан в EEPROM. При этом надо быть осторожным -если прописать двум устройствам один адрес они будут реагировать синхронно а «разделить» их можно будет только физически отключив от сети лишние модули и сменив адрес у оставшегося, либо программатором. Значение нового адреса передается в ячейке красного канала - т.е. в байте со смещением +2.

2: Яркость красного 0...255
+3: Яркость зеленого 0...255
+4: Яркость синего 0...255
+5: Яркость фиолетового 0...255

0x3D; символ "=" - команда «АЦП». После подачи команды нужно дождаться ответа "?" далее следует передать 1 байт - номер канала АЦП 0..7 в двоичном виде(ASCII цифры 0..9 тоже подходят в этом качестве, поскольку старшие 4 бита игнорируются).
В ответ команда возвращает 2 байта результата измерения в диапазоне 0...1023

Возможные ответы на команды:
0x3F; символ "?" - готовность к вводу данных, означает что устройство готово к приему аргументов команды
0x2B; символ "+" Ответ - команда выполнена
0x2D; символ "-" Ответ - команда не определена или ошибочна

Больше подробностей можно выудить из исходников расположенных на гитхабе, там же лежат последние версии готовых прошивок.

Данный проект светодиодной гирлянды на микроконтроллере хорошо подходит для начинающих. Схема отличается своей простотой и содержит минимум элементов.

Данное устройство управляет 13 светодиодами, подключенными к портам микроконтроллера. В качестве микроконтроллера используется МК фирмы ATMEL: . Благодаря использованию внутреннего генератора, выводы 4 и 5 задействованы как дополнительные порты микроконтроллера PA0,PA1. Схема обеспечивает выполнение 12 про- грамм эффектов, 11 из которых - индивидуальные комбинации, а 12-тая про- грамма – последовательный однократный повтор предыдущих эффектов. Переключение на другую программу осуществляется нажатием на кнопку SB1. Программы эффектов включают в себя и бегущий одинарный огонь, и нарастание огня, и бегущую тень и многое другое.

Устройство имеет возможность регулировки скорости смены комбинаций при выполнении программы, которая осуществляется нажатием на кнопки: SB2 – увеличение скорости и SB3 – уменьшение скорости при условии, что переключатель SA1 находиться в положении “Скорость программы”. Также имеется возможность регулировать частоту горения светодиода (от стабилизированного свечения до легкого мерцания), которая осуществляется нажатием на кнопки: SB2 – уменьшение (до мерцания) и SB3- увеличение при условии, что переключатель SA1 находиться в положении “Частота мерцания”. У переключателя SA2 замкнутое положение соответствует режиму регулировки скорости выполнения программ, а разомкнутое - режиму регулировки частоты горения светодиодов.

Порядок нумерации светодиодов в схеме соответствует их порядку зажигания при выполнении программы. При необходимости вывод RESET может быть использован для сброса, а в качестве порта PA2 он не задействован. В устройстве выбрано при программировании тактовая частота 8 МГц от внутреннего генератора (фузы CKSEL3..0 - 0100).Хотя возможно использование частоты в 4 МГц(фузы CKSEL3..0 - 0010) с соответствующими изменениями временных интервалов работы схемы.

Тип светодиодов, указанный на схеме использовался в опытном образце, для схемы подойдут любые светодиоды с напряжением питания 2-3 вольта, резисторами R1-R17 можно регулировать яркость свечения светодиодов.

Прошивку HEX, а также файлы программы на ассемблере вы можете скачать ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 МК AVR 8-бит

ATtiny2313

1 В блокнот
С1 Электролитический конденсатор 100 мкФ 10 В 1 В блокнот
R1-R17 Резистор

1 кОм

17 В блокнот
LED1-LED13 Светодиод LD571 13 В блокнот
SB1-SB3 Кнопка 3 В блокнот
SA1 Выключатель 1

Ранее мы уже научились , однако гораздо интересней управлять этим процессов с помощью кнопок, а светодиодная гирлянда послужит хорошим наглядным примером.

Подключение кнопки к микроконтроллеру

Схема гирлянды приведена ниже.

Когда кнопка (ключ) подключается к микроконтроллеру, то соответствующий вывод МК должен быть настроен на вход. При этом микроконтроллер будет постоянно считывать состояние, а точнее уровень потенциала на данном выводе. Поэтому алгоритм программы можно построить таким образом, что если на определенном выводе МК произойдет смена потенциала с высокого на низкий или наоборот, то выполнится определенное действие, например засветится светодиод.

Чтобы настроить определенные выводы (пин) МК на вход, следует в соответствующие биты регистра DDR записать нули. Кстати, если пины МК не задействованы, то их рекомендуется также настроить на вход. Поскольку к порту B мы будем подключать только кнопки, то в регистр DDRB мы запишем все нули следующий командой:

DDRB = 0b00000000;

Когда вывод микроконтроллера настроен на вход, то изначально он может находиться в двух состояниях, которые устанавливаются с помощью регистра PORT.

Если в бит регистра PORT записан ноль, то пин имеет высокое входное сопротивление.

При установке бита в единицу к ножке МК подключается подтягивающий резистор. Резистор называется так потому, что посредством его “подтягивается” высокий потенциал (+ 5 В) к соответствующей точке электрической цепи; в данном случае – к пину микроконтроллера.

Проверка состояния вывода МК с помощью PINx

Чтобы в любой момент времени знать, какой потенциал присутствует на выводе, следует проверить (считать) соответствующий бит в регистре PIN.

Данный регистр по аналогии можно сравнить с датчиком. С него можно только считывать информацию. Записать в него ничего нельзя. PIN является противоположность регистра PORT, в который выполняется только запись, но не считывание данных.

Боле предпочтительным является установка регистра PORT в единицу, т.е. применение внутреннего подтягивающего резистора МК. Такой вариант имеет значительную помехоустойчивость, поскольку для изменения высокого потенциала на низкий, вывод необходимо напрямую соединить с землей или общим проводом.

Если же пин сделать с высоким входным сопротивлением, то любая более-менее мощная электромагнитная помеха, может навести на нем некоторый потенциал, превышающий определенное значение и микроконтроллер воспримет помеху, как смена низкого потенциала на высокий. Поэтому в нашей программе мы будем использовать внутренний подтягивающий резистор.

Один контакт ключа соединим с землей (общим проводом), а второй – с выводом микроконтроллера. Когда ключ разомкнут, — вывод находится под высоким потенциалом (+ 5 В), подтянутый внутренним резистором МК. При этом соответствующий бит регистра PIN будет установлен в единицу.

При нажатии на кнопку данный вывод соединится с общим проводом (“минусом”) и на нем возникнет низкий потенциал. А бит регистра PIN автоматически установится в ноль.

Обратите внимание, что подтягивающий резистор еще защищает цепь от короткого замыкания при нажатой кнопке.

Светодиодная гирлянда в коде

Теперь давайте напишем целиком код программы, а затем рассмотрим его отдельные элементы. Алгоритм работы программы следующий: при замыкании первого ключа “лампочки” будут включаться в одной последовательности, а при замыкании второго – “лампочки” будут загораться иначе. Если обе кнопки на нажаты, то все светодиоды должны быть выключены.

#define F_CPU 1000000UL // Объявляем частоту работы микроконтроллера 1 МГц

#include

#include // Подключаем библиотеку задержек

#define Z 300 // Значению задержки присваиваем имя Z

#define VD PORTD // Присваиваем порту D имя VD

#define K PORTB // Присваиваем порту B, к которому подключены кнопки, имя K

int main(void)

DDRB = 0b00000000; // Настраиваем порт B на вход

DDRD = 0b11111111; // Настраиваем порт D на выход

VD = 0b00000000; // Выключаем все огни

K = 0b11111111; // Включаем подтягивающие резисторы

while (1)

if (PINB == 0b11111110) // Проверяем, нажата ли 1-я кнопка

VD = 0b11111111; // Если ключ замкнут, то мигаем «лампочками»

_delay_ms (Z);

VD = 0b00000000;

_delay_ms (Z);

else

VD = 0b00000000; // Если ключ разомкнут, то все LED выключены

if (PINB == 0b11111101) // Проверяем, нажата ли 2-я кнопка

VD = 0b00000001; // Если кнопка нажата, то поочередно включаем LED

_ delay _ ms (Z); // с задержкой 0,3 с

VD = 0b00000011;

_delay_ms (Z);

VD = 0b00000111;

_delay_ms (Z);

VD = 0b00001111;

_delay_ms (Z);

LED = 0b00011111;

_delay_ms (Z);

VD = 0b00111111;

_delay_ms (Z);

VD = 0b01111111;

_ delay_ms (Z);

VD = 0b11111111;

_delay_ms (Z);

VD = 0b00000000;

_ delay _ ms (Z);

else

VD = 0b00000000; // Если ключ не замкнут, то все LED выключены

Операторы if и else

Назначение препроцессоров и ним хорошо известны из предыдущих статей. Здесь новым для нас есть оператор if . If переводится с английского «если». Если условие, указанное в круглых скобках, выполнятся, т.е. истинное, то выполняется код программы в фигурных скобках. Например, если переменная a больше 1 единицы, то переменной c присвоится значение a + b.

if (a >1)

c = a + b;

В противном случае, когда значение a меньше или рвано единице, код программы в фигурных скобках не будет выполняться.

Если в фигурных скобках выполняется только одна команда, то синтаксис языка Си позволяет упростить запись и обойтись без фигурных скобок:

if (a >1) c = a + b;

Также оператор if работает в связке с оператором else .

if (a >1) → если a >1, то = a + b

c = a + b;

else → в противном случае, c = a — b

c = a — b;

Работает это так. Если a > 1, то c = a + b. В противном случае, т.е. когда а меньше или равно единице, то c = a – b.

Пояснение кода программы

Теперь возвращаемся к нашей программе. Если кнопка, соединенная с PB0 нажата, то на выводе появляется низкий потенциал и соответствующий бит регистра PINB устанавливается в ноль. При этом будет выполняться условие в фигурных скобках, т.е. начнет мигать гирлянда.

Обратите внимание, что команда присвоения состоит из одного знака равно «=», а команда проверки условия «равно» состоит из двух знаков равно, написанных без пробела «==».

Когда кнопка не нажата, в бите регистра PINB появится единица, вызванная высоким потенциалом подтягивающего резистора. В этом случае управление перейдет к оператору else и все LED будут выключены.

При замыкании второго ключа, вывод которого соединен с портом PB1, выполнится второй код программы, и светодиоды начнут поочередно включаться с задержкой времени 0,3 секунды.

Таким образом, гирлянда на микроконтроллере может содержать разное количество LED и ключей. Причем для каждого замыкания или размыкания контактов ключа можно прописать свой алгоритм работы гирлянды.

Также ею можно управлять с помощью всего одной кнопки. Такой вариант имеет несколько сложнее код, и его мы рассмотрим в отдельной статье. Там же мы рассмотрим, как подключать мощные LED к МК.

Ранее в статье вы подробно рассмотрели настройку на выход, а здесь – на вход. Теперь объединим все вместе и приведем простой наглядный алгоритм.

Включайся в дискуссию
Читайте также
Идеи и примеры сережек из бусин
Картина из ракушек своими руками: мастер-класс с фото
Орешник друиды. Орешник (лесной орех). Насколько верно толкование на Ваш взгляд