Подпишись и читай
самые интересные
статьи первым!

Источник высокого напряжения. Простой способ получения высокого напряжения Высоковольтный модуль где применяется

Высоковольтный модуль зажигания применяется для самозащиты и изготовления современной техники. Зная последовательность работ, можно изготовить такое устройство собственными руками. Как это сделать и где можно найти готовые изделия, расскажет эта статья.

Описание

Высоковольтный модуль - это блок с 4 проводами, 2 из которых необходимы для подключения питания. Как видим, ничего сложного.

Если нужен высоковольтный модуль, его можно приобрести в интернет-магазине или изготовить собственными руками. Готовое устройство работает от пальчиковых литиевых батареек с 3,6 до 6 вольт на входе. На выходе может выдаваться мощность в 400 вольт.

Генератор имеет в составе 4 провода. Для проверки качества покупки можно взять модуль литий-ионного аккумулятора на 3,7 вольта. По параметрам между электродами должна пролетать искра до 2 см.

Такие работы необходимо производить особенно аккуратно. Разведите провода высоковольтного модуля и подсоедините их к аккумулятору. При подаче питания отмечается звуковой эффект в виде свиста. Также произойдет разряд, длина воздействия которого - 1,5-2 см.

Как это работает

Демонстрация работы модуля высоковольтного преобразователя может производиться с использованием генератора. Для этого необходимо питание от бесперебойника на 12 вольт и лампа на 25 Вт. При подсоединении проводов она горит полным накалом.

Описание изготовления высоковольтных генераторов

Умение мастерить выручает не раз в жизни. К примеру, хорошие высоковольтные генераторы стоят достаточно дорого. К тому же их сложно достать. Но ведь высоковольтный модуль успешно можно изготовить своими руками. Для этого понадобится шаговый двигатель, который может прекрасно работать в режиме генерации.

Прямо на вал шаговика присоединяют ручку, вращают ее и заряжают телефон в походных условиях. Эту зарядку можно изготовить своими руками за несколько минут.

Усовершенствование моделей

Есть множество подобных изобретений, но мощность их недостаточно высока. Для зарядки телефона нужно как минимум 2 Вт на выходе такого моторчика для старой модели мобильного устройства и не менее 5 Вт - для современного смартфона.

Где взять высоковольтный модуль с хорошей мощностью? Попытаемся его сделать самостоятельно. Подберем удобную ручку вращения для шаговика, все выводы проводов подсоединим по схеме. Результирующие выводы постоянного тока будут идти на ваттметр и на нагрузку, которая подобрана под этот двигатель и под обороты по оптимальным параметрам.

Какую же мощность удастся развить на крупном шаговом двигателе при оборотах в количестве 120 в минуту? Начнем опыт. Ваттметр показывает 0,8 Вт при напряжении 6 вольт и токе 0,11-0,12 ампер. При более быстром вращении пиковая цифра достигает 1 ампера, но это при очень быстрых оборотах.

Следовательно, подобное устройство требует усовершенствования. Нужен преобразователь, повышающий обороты в 3-4 раза, чтобы успешно можно было заряжать телефон в походных условиях.

Для этого применяется коллекторный моторчик. Можно сделать ременную передачу на этот двигатель, чтобы повысить его обороты в 3 раза. Получится установка с диаметром шкива, который в 3 раза больше того, который установлен на шаговом двигателе. Теперь такое устройство будет вращаться в 3 раза быстрее, что позволит достигнуть показателей в 2-2,2 Вт. При этом напряжение - 17 вольт, ток - 0,12-0,13 ампер. Такая мощность уже более значительна. Если устройство закрепить на столе, крутить ручку достаточно просто.

Чем больше обороты, тем больше полезной мощности может выдать генератор.

Делаем электрошокер: подготовка

Электрошоковые устройства могут быть очень мощными. Законом разрешено использовать устройства до 3 Ватт, которые не способны нанести тяжкий вред здоровью, но гарантируют довольно сильный удар током и ожог.

Схема устройства следующая:

  • источник питания;
  • повышающий преобразователь;
  • высоковольтный умножитель напряжения.

Можно использовать обычный литий-ионный аккумулятор компактных размеров, лучше - литий-железофосфатный. Он имеет меньшую емкость при одинаковом весе, а номинальное напряжение составляет 3,2 вольт против 3,7 вольта в литий-ионном варианте.

Такое устройство обладает массой преимуществ:

  • При собственной емкости всего в 700 мА/часов такой способен отдавать токи в 30-50 А.
  • Имеет срок службы 10-15 лет.
  • Способен работать при температуре до -30 градусов без утраты емкости и прочих негативных последствий.
  • Экологически чист, безопасен, не вздувается и не взрывается.
  • Утрачивает емкость гораздо медленнее.
  • Не так чувствителен к параметрам зарядного устройства, может быть заряжен большими токами, не перегреваясь.

Для преобразователя можно использовать готовую модель из Китая. Или изготовить его собственными руками. Самое важное в таком устройстве - трансформатор. Его можно взять от дежурного источника неработающего блока питания компьютера. Желательно, чтобы он был удлиненного типа, что облегчит процесс мотания.

Собираем устройство

Трансформатор нужно разобрать, извлечь сердечник и нагревать его паяльной лампой в течение 5-10 минут. Структура клея ослабеет, и половинкам легче будет разъединиться.

Внутри есть зазор. Удаление половинок в сердечнике сменяется этапом смотки всех заводских обмоток, остается только поверхность голого каркаса.

Правила выполнения намоточных движений

Высоковольтный модуль для электрошокера требует, чтобы была выполнена намотка первичного типа трансформаторной обмотки. Длину провода в 0,5 мм складывают в два раза. Оптимальные показатели диаметра - от 0,4 до 0,7 мм. Потребуется намотать не менее 8 витков и вывести второй конец проводов наружу.

Изолируем намотанную обмотку при помощи нескольких слоев фторопласта или прозрачного скотча. К тонкому поводу, толщина которого не более 0,05 мм, припаивается кусок многожильного провода, помещенного в толстую изоляцию.

Места, где была выполнена пайка, изолируем при помощи термоусадки. Выводим провод и фиксируем его термоклеем, чтобы случайно не оборвать в процессе обмотки.

Наматываем первичную обмотку, по 100-120 витков, чередуя ее с несколькими слоями изоляции. По своему принципу намотка проста: ряд - слева направо, второй - справа налево, с изоляцией между ними. Так повторяем от 10 до 12 раз.

После того, как намотка выполнена, провода срезаются, к ним припаиваются многожильные высоковольтные провода и термоусадка. Все фиксируют посредством нескольких слоев прозрачным скотчем и собирают трансформатор.

Если не хотите так долго наматывать витки, можно приобрести готовые модули в китайских интернет-магазинах по вполне доступной стоимости или изготовить высоковольтный модуль своими руками.

Испытание устройства

Следующая часть умножителя напряжения - высоковольтные диоды и конденсаторы, которые можно взять от компьютерного блока питания. Диоды нужны также высоковольтного типа. Их напряжение должно быть от 4 кВт. Такие элементы также можно приобрести в интернет-магазинах.

Корпусом может служить коробка от фонарика или плеера, но обязательно из диэлектрического материала: пластмассы, бакелита, стеклотекстолита.

Умножитель с высоковольтным преобразователем рекомендуется залить эбокситной смолой, расплавленным воском или термоклеем. Последний может сильно деформировать корпус, если не поместить его в емкость с холодной водой.

Электроды можно взять от обычной вилки. Шокер снабжен предохранительным выключателем для защиты от случайного включения. Для активации устройства его снимают с предохранителя. Загорается индикаторный светодиод, затем нажимают на кнопку.

Высоковольтный модуль - преобразователь напряжения успешно показывает работоспособность в электрошокере. Зарядное устройство построено на базе микросхемы, где на вход модуля подается напряжение в 5 вольт, на выходе в 3,6 вольта. Такая зарядка позволяет питать девайс от любого USB-порта.

С помощью припоя можно сделать защитные разрядники, ограничивающие длину дуги для безопасной работы высоковольтного преобразователя. Шокер готов.

Изготовление высоковольтного модуля из энергосберегающей лампы

И такое устройство можно без труда изготовить своими руками. Вот только где взять высоковольтный модуль? Можно использовать обычную лампочку накаливания. Вначале мотаем не более 80 мотков. Второй слой - 400-600 витков. Между каждым слоем не забываем делать изоляцию из скотча.

Для испытания устройства подключим его через ограничительную лампочку в 35 Вт. Получился достаточно мощный высоковольтный модуль зажигания.

Сферы применения продукции

Где используется высоковольтный модуль? Такие устройства широко используются для изготовления современной аппаратуры, могут служить лабораторным генератором высокого напряжения. С помощью такого устройства можно построить самодельный шокер, систему для поджигания топлива в форсунке или двигателе.

Можно использовать для обеспечения питания портативного счетчика Гейгера, дозиметра, разновидностей аппаратуры, требующей высоких показателей напряжения с питанием, которое имеет небольшую мощность.

Устройство микросхемы включено в режиме «Мультивибратор» при показателях частоты, регулируемой в зависимости от того, каковы характеристики трансформатора. Высокий уровень, который показывает выходной сигнал тока, протекающий по резистору и первичной обмотке трансформатора, способен зарядить конденсатор 10 мкф. Для того, чтобы изготовить электрошок, потребуется устройство трансформатора, коэффициент умножения которого составляет 1 к 400 и выше.

Для получения искры в 1 мм нужны показатели напряжения около 1000 В. Зная последовательность работ, можно изготовить такое устройство собственными руками.

Прежде чем мы перейдём к описанию предлагаемого для сборки источника высокого напряжения, напомним о необходимости соблюдать общие меры безопасности при работе с высокими напряжениями. Хотя это устройство даёт выходной ток чрезвычайно малого уровня, оно может быть опасным и вызовет довольно неприятный и болезненный удар, если случайно каснуться в неположенном месте. С точки зрения безопасности, это один из самых безопасных высоковольтных источников, поскольку выходной ток сравним с током обычных электрошокеров. Высокое напряжение на выходных клеммах - постоянного тока около 10-20 киловольт, и если подключить разрядник, то можно получить дугу 15 мм.

Схема источника высокого напряжения

Напряжение может регулироваться изменением количества ступеней в умножителе, например, если вы хотите, чтобы оно зажгло неоновые лампы - можно использовать одну, если хотите, чтобы работали свечи зажигания - можно использовать две или три, и если нужно более высокое напряжение - можно использовать 4, 5 и более. Меньше каскадов означает меньшее напряжение, но больший ток, что может увеличить опасность этого устройства. Парадокс, но чем больше напряжение, тем менее сложным будет нанести ущерб из-за питания, поскольку ток падает до пренебрежительно малого уровня.

Как это работает

После нажатия кнопки, ИК-диод включается и луч света попадает на датчик оптрона, этот датчик имеет выходное сопротивление около 50 Ом, что достаточно для включения транзистора 2n2222. Этот транзистор подаёт энергию батареи для питания таймера 555. Частоту и скважность импульсов можно регулировать изменением номиналов компонентов обвязки. В данном случае частота может регулироваться с помощью потенциометра. Эти колебания, через транзистор BD679, усиливающий импульсы тока, поступают на первичную катушку. Со вторичной снимается переменное напряжение, увеличенное в 1000 раз, и выпрямляется ВВ умножителем.

Детали для сборки схемы

Микросхема - любой таймер серии КР1006ВИ1. Для катушки - трансформатор с отношением сопротивления обмоток 8 Ом:1 кОм. Первое, на что необходимо обратить внимание при выборе трансформатора - это размер, так как количество энергии, которое они могут обрабатывать, пропорционально их размерам. Например размером с большую монету даст нам больше энергии, чем небольшой трансформатор.

Первое, что необходимо сделать для его перемотки, это удалить ферритовый сердечник для доступа к самой катушке. В большинстве трансформаторов две части склеиваются клеем, просто держите трансформатор плоскогубцами над зажигалкой, только осторожно, чтоб не расплавить пластик. После минуты клей должен расплавиться и надо разломить его на две части сердечника.

Учитывайте, что феррит очень хрупкий и трескается довольно легко. Для намотки вторичной катушки использовался эмалированный медный провод 0,15 мм. Намотка почти до заполнения, чтоб потом хватило ещё на один слой более толстого провода 0,3 мм - это будет первичка. Она должна иметь несколько десятков витков, около 100.

Почему здесь установлен оптрон - он обеспечит полную гальваническую развязку от схемы, с ним не будет электрического контакта между кнопкой замыкания питания, микросхемой и высоковольтной частью. Если случайно пробьёт высокое напряжение по питанию, то вы будете в безопасности.

Сделать оптрон очень легко, любой ИК-светодиод и ИК-датчик вставьте в термоусадочную трубку, как показано на картинке. В крайнем случае, если не хочется усложнять дело, уберите все эти элементы и подавайте питание замкнув К-Э транзистора 2N2222.

Обратите внимание на два выключателя в схеме, так сделано потому, что каждая рука должна быть задействована чтобы активировать генератор - это будет безопасно, уменьшает риск случайного включения. Также при работе устройства вы не должны прикасаться к чему-либо еще, кроме кнопок.

При сборке умножителя напряжения не забудьте оставить достаточный зазор между элементами. Обрежьте все торчащие выводы, поскольку они могут привести к коронным разрядам, которые сильно снижают эффективность.

Рекомендуем изолировать все оголенные контакты умножителя с термоклеем или другим аналогичным изоляционным материалом и, после этого, обернуть в термоусадочную трубку или изоленту. Это не только уменьшит риск случайных ударов, но и повысит эффективность схемы путем уменьшения потерь через воздух. Также для страховки добавили кусок пенопласта между умножителем и генератором.

Потребляемый ток должен быть примерно 0,5-1 ампер. Если больше - значит схема плохо настроена.

Испытания генератора ВН

Было испытано два различных трансформатора - оба с отличными результатами. Первый имел меньший размер ферритового сердечника и, следовательно, меньше индуктивность, работал на частоте 2 кГц, а в другом около 1 кГц.

При первом запуске сначала проверьте генератор NE555, работает ли он. Подключите маленький динамик к ноге 3 - при изменении частоты вы должны услышать звук, исходящий из него. Если все сильно нагревается можно увеличить сопротивление первичной обмотки, намотав её проводом потоньше. И небольшой радиатор для транзистора рекомендуется. Да и правильная частота настройки является важной, чтобы избежать этой проблемы.

Из данной статьи вы узнаете как получить высокое напряжение, с высокой частотой своими руками. Стоимость всей конструкции не превышает 500 руб, при минимуме трудозатрат.

Для изготовления вам понадобится всего 2 вещи: - энергосберегающая лампа (главное, чтобы была рабочая схема балласта) и строчный трансформатор от телевизора, монитора и другой ЭЛТ техники.

Энергосберегающие лампы (правильное название: компактная люминесцентная лампа ) уже прочно закрепились в нашем быту, поэтому найти лампу с нерабочей колбой, но с рабочей схемой балласта я думаю не составит труда.
Электронный балласт КЛЛ генерирует высокочастотные импульсы напряжения (обычно 20-120 кГц) которые питают небольшой повышающий трансформатор и т.о. лампа загорается. Современные балласты очень компактны и легко помещаются в цоколе патрона Е27.

Балласт лампы выдает напряжение до 1000 Вольт. Если вместо колбы лампы подключить строчный трансформатор, то можно добиться потрясающих эффектов.

Немного о компактных люминесцентных лампах

Блоки на схеме:
1 - выпрямитель. В нем переменное напряжение преобразуется в постоянное.
2 - транзисторы, включенные по схеме push-pull (тяни-толкай).
3 - тороидальный трансформатор
4 - резонансная цепь из конденсатора и дросселя для создания высокого напряжения
5 - люминесцентная лампа, которую мы заменим строчником

КЛЛ выпускаются самой различной мощности, размеров, форм-факторов. Чем больше мощность лампы, тем более высокое напряжение нужно приложить к колбе лампы. В данной статье я использовал КЛЛ мощностью 65 Ватт.

Большинство КЛЛ имеют однотипную схемотехнику. И у всех имеется 4 вывода на подключение люминесцентной лампы. Необходимо будет подсоединить выхода балласта к первичной обмотке строчного трансформатора.

Немного о строчных трансформаторах

Строчники также бывают разных размеров и форм.

Основной проблемой при подключении строчника, является найти 3 необходимых нам вывода из 10-20 обычно присутствующих у них. Один вывод - общий и пара других выводов - первичная обмотка, которая будет цепляться к балласту КЛЛ.
Если сможете найти документацию на строчник, или схему аппаратуры, где он раньше стоял, то ваша задача существенно облегчится.

Внимание! Строчник может содержать остаточное напряжение, так что перед работой с ним, обязательно разрядите его.

Итоговая конструкция

На фото выше вы можете видеть устройство в работе.

И помните, что это постоянное напряжение. Толстый красный вывод - это "плюс". Если вам нужно переменное напряжение, то нужно убрать диод из строчника, либо найти старый без диода.

Возможные проблемы

Когда я собрал свою первую схему с получением высокого напряжения, то она сразу же заработала. Тогда я использовал балласт от лампы мощностью 26 Ватт.
Мне сразу же захотелось большего.

Я взял более мощный балласт от КЛЛ и в точности повторил первую схему. Но схема не заработала. Я подумал, что балласт сгорел. Обратно подключил колбы лампы и включил в сеть. Лампа загорелась. Значит дело было не в балласте - он был рабочий.

Немного поразмыслив я сделал вывод, что электроника балласта должны определять нить накала лампы. А я использовал только 2 внешних вывода на колбу лампы, а внутренние оставил "в воздухе". Поэтому я поставил резистор между внешним и внутренним выводом балласта. Включил - схема заработала, но резистор быстро сгорел.

Я решил использовать конденсатор, вместо резистора. Дело в том, что конденсатор пропускает только переменный ток, а резистор и переменный и постоянный. Также, конденсатор не нагревался, т.к. давал небольшое сопротивление на пути переменного тока.

Конденсатор работал великолепно! Дуга получилась очень большой и толстой!

Итак если у вас не заработала схема, то скорее всего 2 причины:
1. Что-то не так подключили, либо на стороне балласта, либо на стороне строчного трансформатора.
2. Электроника балласта завязана на работе с нитью накала, а т.к. ее нет, то заменить ее поможет конденсатор.

Многие из нас хоть раз в жизни видели в интернете или в реальной жизни фотографии Высоковольтных генераторов, или сами их делали. Многие представленные в интернете схемы довольно мощные, их выходное напряжение составляет от 50 до 100 Киловольт. Мощность, как и напряжение тоже довольно высокая. Но их питание – главная проблема. Источник напряжения должен быть подобающей генератору мощности, должен уметь отдавать долговременно большой ток.

Есть 2 варианта питания ВВ генераторов:

1)аккумулятор,

2)сетевой источник питания.

Первый вариант позволяет запустить устройство далеко «от розетки». Однако, как раннее было замечено, устройство будет потреблять большую мощность и, следовательно, аккумулятор должен обеспечивать эту мощность (если вы хотите, чтобы генератор работал «на все 100»). Аккумуляторы такой мощности довольно большие и автономным устройство с таким аккумулятором не назовёшь. Если осуществлять питание от сетевого источника, то об автономности тоже говорить не придётся, так как генератор буквально «не оторвёшь от розетки».

Моё же устройство вполне автономно, так как потребляет от встроенного аккумулятора не так уж и много, однако вследствие низкого потребления мощность тоже не велика – около 10-15W. Но дугу с трансформатора получить можно, напряжение около 1 Киловольта. С умножителя напряжения по выше – 10-15 Кв.

Ближе к конструкции…

Так как этот генератор для серьёзных целей не планировал, я поместил все его «внутренности» в картонную коробку (как бы смешно это не звучало, но это так. Я прошу не судить строго мою конструкцию, так как высоковольтной технике я не специалистL). У моего устройства присутствуют 2 Li-ionаккумулятора, ёмкостью 2200 мА/ч. Их зарядка осуществляется с помощью линейного стабилизатора на 8 вольт: L7808. Он также находится в корпусе. Также имеется два зарядных устройства: от сети (12 в., 1250 мА/ч.) и от прикуривателя автомобиля.

Сама схема генерации высокого напряжения состоит из нескольких частей:

1)фильтр входного напряжения,

2)задающий генератор, построенный на мультивибраторе,

3)силовые транзисторы,

4)высоковольтный повышающий трансформатор (хочу отметить, что сердечник не должен иметь зазор, наличие зазора приводить к увеличению тока потребления и вследствие выход из строя силовых транзисторов).

Также к высоковольтному выходу можно подключить «симметричный» умножитель напряжения или… люминесцентную лампу, тогда ВВ генератор превращается в фонарь. Хотя на самом деле изначально это устройство планировалось сделать как фонарь. Схема преобразователя выполнена на макетной плате, при желании можете создать печатную плату. Максимальное потребление схемы – до 2-3 Ампера, это стоит учитывать при выборе выключателей. Стоимость устройства зависит от того, где вы брали компоненты. Я большую половину комплектации нашёл у себя в ящике или в коробке для хранения радиодеталей. Купить мне пришлось всего лишь линейный стабилизатор L7808, ИВЛМ1-1/7 (на самом деле сюда вставил ради интереса, а купил из любопытства J), также мне пришлось купить электронный трансформатор для галогенных ламп (из него я взял всего лишь трансформатор). Провод для намотки вторичной (повышающей, высоковольтной) обмотки взял из давно сгоревшего строчного трансформатора (ТВС110ПЦ), и Вам советую делать тоже самое. Так провод в строчных трансформаторах высоковольтный и с пробоем изоляции проблем быть не должно. С теорией вроде бы разобрались – теперь перейдём к практике…

Внешний вид…

Рис.1 – вид на управляющую панель:

1)индикаторы работоспособности

2)индикатор присутствия зарядного напряжения

3)вход от 8 до 25 вольт (для зарядки)

4)кнопка включения заряда аккумулятора (включать только при подключённом зарядном устройстве)

5)переключатель аккумуляторов (верхнее положение – основной, нижнее - запасной)

6)выключатель ВВ генератора

7)высоковольтный выход

На лицевой панели присутствуют 3 индикатора работоспособности. Их здесь такое количество, потому что семисегментный индикатор является моим инициалом (на нём светиться первая буква моего имени: «А»J), светодиоды над выключателем и переключателем изначально планировались быть дополнительными индикаторами заряда батареи, но со схемой индикации возникла проблема, а отверстия в корпусе уже были сделаны. Пришлось поставить светодиоды, но уже в качестве просто индикаторов, дабы не портить внешний вид.

Рис.2 – вид на вольтметр и индикатор:

8)вольтметр – показывает напряжение на аккумуляторе

9)индикатор – ИВЛМ1-1/7

10)предохранитель (от случайного включения)

Вакуумно-люминесцентный индикатор установил ради интереса, так как это мой первый индикатор такого типа.

Рис.3 – внутренний вид:

11)корпус

12)аккумуляторы (12,1-основной, 12,2-запасной)

13)линейный стабилизатор 7808 (для зарядки аккумуляторов)

14)плата преобразователя

15)теплоотвод с полевым транзистором КП813А2

Тут, думаю нечего пояснять.

Рис.4 – зарядные устройства:

16)от сети 220 в. (12 в., 1250 мА.)

17)от прикуривателя автомобиля

Рис.5 – нагрузки для АВВГ:

18)9 W люминесцентная лампа

19)«симметричный» умножитель напряжения

Рис.6 – принципиальная схема:

USB 1 – стандартный выход USB

BAT 1, 2 – Li - ion 7,4 в. 2200 мА/ч (18650 Х 2)

R 1, 2, 3, 4 – 820 Ом

R 5 – 100 КОм

R 6, 7 – 8,2 Ом

R 8 – 150 Ом

R 9, 12 – 510 Ом

R 10, 11 – 1 КОм

L 1 – сердечник от дросселя из энергосберегающей лампы, 10 витков по 1,5 мм.

C 1 – 470 мкФ 16 в.

C 2, 3 – 1000 мкФ 16 в.

C 4, 5 – 47 нФ 250 в.

C 6 – 3,2 нФ 1,25 Кв.

C 7 – 300 пФ 1,6 Кв.

С8 – 470 пФ 3 Кв.

С9, 10 – 6,3 нФ

C 11, 12, 13, 14 – 2200 пФ 5 Кв.

D 1 – красный светодиод

D 2 – АЛ307ЕМ

D 3 – АЛС307ВМ

VD 1, 2, 3, 4 – КЦ106Г

HL 1 – ЗЛС338Б1

HL 2 – NE 2

HL 3 – ИВЛМ1-1/7

HL 4 – ЛДС 9 W

IC 1 – L 7808

SB 1 – кнопка 1А

SA 1 – выключатель 3А (ON - OFF с неоновой лампой)

SA 2 – переключатель 6А (ON - ON )

SA 3 – выключатель 1А (ON - OFF )

PV 1 –М2003-1

T 1 – повышающий трансформатор:

ВВ обмотка: 372 витков ПЭВ-2 0.14мм. R=38.6ом

Первичная обмотка: 2 по 7 витков ПЭВ-… 1мм. R=0.4ом

VT 1 – КТ819ВМ

VT 2 – КП813А2

VT 3, 4 – КТ817Б

Общее количество компонентов: 53.

Без чего МОЖЕТ работать эта схема, на самом деле много без чего: IC1, R1, 2, 3, 4, 5, 8, C1, 2, 3, 4, 5, 7, 8,

Пояснения к схеме:

Минус общий, идёт от входа USB до платы преобразователя. Плюсы от аккумуляторов идут к переключателю, от него уже один вывод к выключателю (SA1), а от него к преобразователю. Также плюс идет к вольтметру (PV1), через резистор к катоду индикатора и к анодам светодиодов (для каждого светодиода отдельный резистор). Зарядка осуществляется после того как на вход USB подаётся напряжение от 8 до 25 вольт, а также после нажатия кнопки (SB1), светодиод (D1) загорается после того как подаётся напряжение для зарядки (контролировать процесс заряда можно с помощью вольтметра PV1).

Переключение между основным и запасным аккумуляторами осуществляется с помощью переключателя (SA1), дальше силовой плюс идёт к выключателю (SA2) (через выключатель SA3) ВВ генератора, неоновая лампа (HL2) находится внутри выключателя. Дальше силовые выводы поступают на блок конденсаторов и задающий генератор, построенный на мультивибраторе(VT3, 4. C9, 10. R9, 10, 11, 12), транзисторы КТ817Б можно заменить на любые другие аналоги, от него импульсы поступают на базу и затвор транзисторов(VT1, VT2), транзисторыможно использовать менее или более мощные аналоги. Здесь использованы полевой и биполярный транзисторы, сделано это для того, чтобы снизить потребление. После трансформатора высокое напряжение поступает на группы анодов-сегментов вакуумно-люминесцентного индикатора, а после на ВВ выход.

Потребление (как фонарь): за 1 минуту схема разряжает аккумулятор на 0,04 В. (40 милливольт.). Если генератор будет работать 25 минут, следовательно, разрядится на 1 вольт (25*0,04).

Очень простой преобразователь на 50 кВ, который имеет в своем составе по сути три элемента. Все компоненты доступны и при желании из несложно найти.
Высоковольтный преобразователь может быть использован для различных экспериментов с высоким электричеством, как ионизатор, прибор проверки целостности изоляции и т.п.

Что потребуется:
- Трансформатор строчной развертки от любого телевизоров с кинескопом.
- Полевой транзистор IRFZ44 –
- Резистор 150 Ом (1/2 Вт).

Схема высоковольтного преобразователя

Соберем все на макетной плате без пайки. Я просто покажу работу, а если вам понравиться вы сможете перенести на более надежную плату и запаять все элементы.


Подключение транзистора, если кто не знает.


Обмотку трансформатора нужна намотать нам. Высоковольтная обмотка будет родная. Берем обычный, не совсем тонкий провод и намотаем 14-16 витком. Отвод сделаем по середине обмотки.





Теперь подключаем все к нашей схеме. В самую последнюю очередь подключается питание. Будьте осторожны, так как работаете с высоким напряжением. Не подносите руки к включенному трансформатору.

Сделайте расстояние примерно 1 см, между высоковольтным выходом трансформатора и с выводами другой стороны. И только потом подайте питание. Если искрит, значит генератор возбуждается и все работает нормально.
Если будете эксплуатировать длительное время, желательно установить транзистор на радиатор. А если искра будет маленькая, то можно увеличить напряжение до 10 или до 15 В.

Видео работы

Включайся в дискуссию
Читайте также
Как сделать настольный календарь своими руками из бумаги
Как сделать елку из шишек сосны Как сделать елку из шишек сосны пошагово
Свойства пирамидальной воды