Подпишись и читай
самые интересные
статьи первым!

Поочередное включение светодиодов на транзисторах. Как включить светодиод. Параллельное и последовательное включение. Типичные характеристики светодиодов

С токоограничивающим резистором для одного светодиода мы разобрались, теперь осталось выяснить, как включить несколько светодиодов. Предположим в нашем распоряжении источник напряжения в 12 В и три светодиода АЛ307И. У нас три варианта.

Первый – включить их каждый через свой токоограничивающий резистор, как мы делали на предыдущем практикуме:

В этом случае расчет токоограничивающих резисторов ничем не отличается от предыдущих расчетов (см. практикум « «) и будет одинаков для всех светодиодов.

Второй вариант – включить все светодиоды параллельно и нагрузить одним резистором, рассчитанным на тройной ток (светодиодов ведь три):

Вроде все верно, но есть одно «но», которое все испортит – разброс параметров даже однотипных светодиодов. В результате через светодиод с самым маленьким внутренним сопротивлением потечет повышенный ток и, в конце концов, он сгорит. Вот тут начнутся настоящие беды – через оставшиеся два потечет ток, больше расчетного минимум в 2 раза и сразу же выйдет из строя следующий, с меньшим «здоровьем». Что останется третьему, когда через него потечет ток, втрое превышающий расчетный? Итак, мы остались без светодиодов. Поэтому бросаем вновь изобретенный велосипед и возвращаемся к старому – ставим каждому светодиоду собственный токоограничивающий резистор:

Но у нас есть еще один вариант – последовательное соединение светодиодов и один токоограничивающий резистор:

В этом случае ток через все светодиоды будет одинаков, единственное условие – напряжение источника питания должно превышать сумму падений напряжений на каждом светодиоде. Как я уже сказал, наш источник питания выдает напряжение 12 В, а рабочее напряжение (U раб) того или иного типа светодиода мы снова смотрим в справочнике по светодиодам . Для АЛ307И Uраб =2.5 В, Iраб = 10 мА. Значит при токе через цепочку светодиодов 10 мА (их номинальный рабочий ток) на ней упадет 7.5 В. Все нормально, нашего источника хватит. Осталось подобрать токоограничивающий резистор. Снова обратимся к и рассчитаем номинал гасящего резистора:

Вполне очевидно, что 3 — число светодиодов в цепи. 0.75 – коэффициент надежности.

(12В-7.5В)/0.01А*0.75 = 600 Ом

Важно! Поскольку через все светодиоды течет одинаковый ток, соединять последовательно можно только прибры одного типа с одними теми же паспортными данными! Если в вашем распоряжении разные типы светодиодов, то резистор придется рассчитать и поставить для каждого прибора отдельно.

Ну и если вы предполагаете часто применять расчет гасящих резисторов, то удобнее будет воспользоваться

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет, чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

На сегодняшний день светодиоды изготавливаются различной мощности. Блоки питания для них подходят самые разнообразные. Также следует учитывать, что подключение модели зависит от типа драйвера устройства (если он имеется). В наше время можно найти хорошие и плохие схемы включения светодиодов. Чтобы более подробно разобраться в этом вопросе, необходимо посмотреть на модели различной мощности.

Подключение к сети на 5 В

В сети с напряжением 5 В подключение светодиодов (схема показана ниже) чаще всего происходит в последовательном порядке. В данном случае многое зависит от номинального сопротивления в сети. Если этот параметр превышает 10 Ом, то целесообразнее использовать импульсные блоки питания.

При этом с электромагнитными помехами в цепи позволит справиться проходной конденсатор. В данном случае подключение светодиодов лучше проводить с резисторами линейного типа. В свою очередь открытые аналоги сопротивление максимум способны выдерживать 13 Ом. Для повышения проводимости светодиода используются системные модуляторы.

Если рассматривать модели с контактными драйверами, то для них необходимо отдельно подбирать контроллеры. Чаще всего их используют со специальным усилителем. В данном случае пороговое напряжение будет находиться на уровне 6 В. Для того чтобы решить проблему с отрицательной полярностью в сети, многие специалисты рекомендуют использовать операционные усилители.

Подключение к сети на 12 В

Подключение светодиодов к 12 вольт может осуществляться как в последовательном, так и в параллельном порядке. Если рассматривать первый вариант, то блоки питания целесообразнее подбирать импульсного типа. Также следует знать, что выполнить подключение светодиодов к 12 вольт можно без усилителей. Однако если устанавливается более трех штук, то их предусмотреть необходимо. Модели с резонансными драйверами должны соединяться только с низкоомными усилителями.

Если рассматривать параллельное подключение светодиодов, то в данном случае для цепи важно подобрать два резистора открытого типа. При этом первый из них должен устанавливаться перед усилителем. Пропускная способность тока у него обязана быть не ниже 3 А.. При этом параметр порогового напряжения в устройстве не должен допускаться ниже уровня 4 А. Как правило, отрицательное сопротивление у моделей данного типа небольшое. При этом сохранение линейности достигается за счет использования качественных драйверов.

Светодиоды в сети 220 В

Какие особенности в данном случае имеет подключение светодиодов? 220В предусматривает, как правило, последовательный порядок. Блоки питания в данном случае используются в основном понижающего типа. Для предотвращения повышения частоты, подключение светодиодов к сети 220В должно осуществляться с операционными усилителями.

Также следует учитывать, что чувствительность их зависит от типов фильтров. Для того чтобы минимизировать магнитные помехи, эксперты советуют устанавливать низкоомные фильтры. В данном случае многое зависит от драйвера светодиода. Если рассматривать аналоговый тип, то для него регулятор потребуется поворотный. Чтобы справиться в этой ситуации с нелинейными искажениями, применяют низкочастотные адаптеры. Устанавливаются они, как правило, возле усилителей.

Схема подключения устройств к компьютеру

К компьютеру подключение светодиодов может осуществляться по-разному. Как правило, конденсаторы с этой целью применяются только фазового типа. В данном случае резисторы могут использоваться открытые, однако пороговое напряжение они обязаны выдерживать не ниже 5 В. Дополнительно следует обращать внимание на частотность светодиода.

Если рассматривать стандартные модели, то они соединяются с блоками питания через усилители. При этом резисторы обязаны располагаться в конце цепи. Если рассматривать мощные светодиоды, то для них потребуется интегральный усилитель. В данном случае драйвера приветствуются с высоким покрытием. Проводимость устройства зависит исключительно от мощности блока питания. Непосредственно соединения светодиода происходит в данном случае через сетевой фильтр.

Подключение к низкочастотному блоку питания

К низкочастотному блоку питания подключение светодиодов (схема показана ниже) может осуществляться только в сети с постоянным током. При этом резисторы используются открытого типа. В данном случае минимум мощность светодиода обязана составлять 5 В. Усилитель для него можно подобрать операционного типа. Если рассматривать модели с драйверами, то они припаиваются часто вместе с проходными конденсаторами.

В данном случае параметр проводимости тесно связан с их емкостью. Для усиления чувствительности прибора многие эксперты советуют использовать широкополосные преобразователи. В данном случае адаптеры для борьбы с помехами не подходят. Однако различные фильтры устанавливать имеет смысл. Дополнительно следует отметить, что регуляторы в цепи можно использовать как поворотного, так и кнопочного типа.

Подключение светодиодов к высокочастотному блоку питания

К высокочастотным блокам питания подключение светодиодов происходит только через вспомогательный адаптер. При этом в данном случае важную роль играет тип драйвера. Если рассматривать однополюсные модели, то они отличаются высоким параметром проводимости. В данном случае отрицательное сопротивление в цепи должно держаться на уровне 10 Ом. Если подсоединяется только один светодиод, то усилитель операционного типа использовать не обязательно.

В противном случае лучше его установить для решения проблем с нелинейными искажениями. Дополнительно следует учитывать, что электродные драйвера для подключения к высокочастотным блокам питания не подходят. Связано это в первую очередь с высокой чувствительности таких устройств. В сложившейся ситуации светодиоды будут сгорать довольно быстро. При этом регуляторы мощности не помогут.

Последовательное подключение

Подключение светодиодов последовательно осуществляется при помощи стабилитронов. Найти их в магазине на сегодняшний день довольно просто. Устанавливаются они, как правило, на специальной магнитной сетке. Для их фиксации на плате придется воспользоваться паяльной лампой. Также следует учитывать, что у блока питания должен быть предусмотрен мощный усилитель. В данном случае резисторы многие специалисты рекомендуют устанавливать пектронного типа.

При этом уровень номинального сопротивления они должны выдерживать не менее 4 Ом. В свою очередь параметр нагрузки приветствуется на отметке в 20 А. Решить проблему с магнитными помехами можно при помощи установки выходного фильтра. Для поднятия чувствительности устройства используются как переменные, так и статические конденсаторы. По габаритам они довольно сильно отличаются. В связи с этим по данному вопросу необходимо подходить каждый раз индивидуально.

Схемы с емкостными конденсаторами

Подключение мощных светодиодов с емкостными конденсаторами, на первый взгляд, осуществляется довольно простой. Однако в данной ситуации необходимо в первую очередь учитывать мощность резисторов. Также важно помнить, что по параметрам драйверы светодиодов могут довольно сильно отличаться. В связи с этим подбирать конденсаторы для устройства необходимо очень тщательно. В первую очередь оценивается непосредственно блок питания, к которому подсоединяется усилитель. Если рассматривать модификации с пороговым напряжением в 20 В, то емкостный конденсатор в данном случае можно использовать один.

В противном случае их устанавливается два для решения проблем с нелинейными искажениями. В свою очередь чувствительность устройства всегда можно настроить при помощи котроллера. Непосредственно драйвера чаще всего используются импульсного типа. В свою очередь модуляторы можно устанавливать разнообразные. Проблемы с полярностью в данном случае возникнуть не должны. В итоге при блоке питания в 20 В пороговый ток обязан поддерживаться на уровне 3 А. При этом частотность может колебаться в зависимости от скачков напряжения в сети.

Использование демпфирующих конденсаторов

Подключение светодиодов с демпфирующими конденсаторами подразумевает использование блоков питания на 15 В.. При этом резисторы применяются только открытого типа. В итоге параметр отрицательного сопротивления в цепи не превышает 30 Ом. Также следует учитывать, что светодиоды могут использоваться только малой мощности. Непосредственно конденсаторы устанавливаются возле блоков питания. В данном случае для нормальной работы устройства усилители не требуются.

За счет высокой чувствительности моделей их пороговое напряжение - не менее 15 В.. При этом максимальная нагрузка зависит от мощности светодиодов. Драйвера для моделей, как правило, подбирают широтного типа. Решить проблему с отрицательной полярностью в такой ситуации можно довольно просто. Фильтры с этой целью следует устанавливать за усилителями. Также в данном случае с проблемой помогут справиться интегральные тетроды.

Применение поглощающих фильтров

Фильтры данного типа больше всего подходят для светодиодов на 20 В. При этом с импульсными блоками питания работать они не способны. Дополнительно следует учитывать, что проблемы с нелинейными искажениями они не решают. В свою очередь стабилизировать частотность фильтры способны довольно быстро. За счет этого проблемы с чувствительностью у таких моделей бывают очень редко.

Светодиоды с волновыми ресиверами

Светодиоды данного типа, как правило, подключаются напрямую к блокам питания. При этом усилители в сети не требуются. Однако в данном случае важно помнить о типе резистора. Если он используется открытый, фильтры устанавливать придется. Дополнительно следует учитывать, что для последовательного соединения светодиодов указанные ресиверы подходят идеально. При этом параллельное подключение может спровоцировать нелинейные искажения. Чувствительность устройства будет зависеть от параметра входного напряжения.

Светодиоды с магнитными драйверами

Подключаются светодиоды с магнитными драйверами, как правило, в последовательном порядке. На первом этапе очень важно оценить их мощность. Дополнительно следует учитывать параметр отрицательного сопротивления в цепи. Если рассматривать маломощные модели, то они соединяются с блоками питания через усилитель. В противном случае лучше использовать сетевые фильтры.

При этом поглотительные модификации могут привести к магнитным помехам. Как решить проблемы с повышенной частотностью в данном случае? Специалисты рекомендуют использовать одноканальные резисторы. При этом модуляторы для схемы можно подбирать самые разнообразные.

У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.

Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.

Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В . Эту величину возьмем за основу при дальнейших расчетах.

Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом . Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А ! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.

Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.

Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.

Как подключить светодиод к 220 В с помощью резистора

Для большей наглядности изобразим расчетную схему.

Такая схема очень распространена в работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.

С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.

Определим сопротивление R 1 , необходимое для первого светодиода:

Сетевое напряжение делим на два по уже указанной выше причине.

Мощность рассеивания резистор равна:

Принимаем 2 ватта , поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.

Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:

Мощность рассеивания равна:

Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.

Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.

Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В . В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В , амплитуда которого достигает 310 В . Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.

Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.

Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц . Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.

В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.

Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.

Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f , т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:


Из приведенной формулы нам необходимо найти значение емкости:

Сопротивления X с мы принимаем аналогично ранее найденным для резисторов: X С1 = R 1 = 11000 Ом; X С2 = R 2 = 306 Ом.

Подставляем данные значения и находим емкости:


Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В !!!

Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.

Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.

Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:

Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом .

Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт

На схеме мы видим традиционное последовательное соединение светодиодов, подключенных к аккумулятору.

Данное соединение предполагает одинаково яркое свечение светодиодов. Но тут нам "мешает" резистор.

Рассмотрим не много другой пример. А именно, возьмем светодиодный драйвер и подключим его к трем последовательным светодиодам.

В результате того, что сила тока в замкнутой цепи одинакова, то и через каждый диод будет течь одинаковый ток I 1 =I 2 =I 3. Соединение без резистора при помощи драйвера также обеспечивает одинаковую яркость, а разница падения напряжения на диодах не играет никакого значения. Отражается только на величине разности потенциалов между точкой 1 и 2.

Расчет драйвера для последовательного соединения светодиодов

Описанное выше последовательное соединение LEDs может вызвать большие вопросы по поводу выбора самого драйвера. Используя ниже приведенный алгоритм расчета Вы всегда самостоятельно сможете рассчитать драйвер, в зависимости от выбранного соединения.

Допустим нам необходимо запитать три светодиода, соединенных последовательно током 700 мА.

Падение напряжения (вымышленно) при таком токе составляет от 3,2 до 3,4 В.

Минимальное напряжение U min =3*3.2=9.6 V

Максимальное напряжение U max =3.4*3=10.2 V

Мощность потребляемая светодиодами составит: Р=10,2*0,7=7,14 Вт.

Итого: наш драйвер должен иметь:

Выходной ток 700 мА

Выходное напряжение 10,2В +- 5%

Выходная мощность не менее 7,2 Вт

Это все! Как видите. никаких проблем. Рассматривать расчет резистора при отсутствии драйвера не буду. Это пережитки прошлого. Любой производитель уже выпускает светодиодные драйверы на любой вкус и цвет. При этом стоимость их ничтожно мала. А эффективность от"коробочки" на много больше, чем от простого резистора.

Плюсы и минусы последовательного соединения светодиодов

Плюс один и большой - дешевизна в конструкции.

Минусов же при последовательном соединении как минимум два:

  1. Если выйдет из строя хотя бы один светодиод, естественно погаснет и вся цепочка. Тут, правда, можно еще один плюс найти... Если диод закоротит, то цепь не оборвется и остальные чипы продолжат свою работу.
  2. Если светодиодов много, то низковольтное питание реализовать архисложно. А это уже проблема. Особенно, если необходимо иметь безопасность в первую очередь.

Видео на тему последовательного соединения светодиодов

Для тех, кому лень читать много букавак, то предлагаем посмотреть простенькое видео на тему: "последовательное соединение светодиодов". Из него вы быстро почерпнете информацию как правильно подключать диоды при таком соединении.

Включайся в дискуссию
Читайте также
Как сделать настольный календарь своими руками из бумаги
Как сделать елку из шишек сосны Как сделать елку из шишек сосны пошагово
Свойства пирамидальной воды